Dictionary (Map) ADT

• Contents:
 • Sets of key+value pairs
 • Keys must be comparable

• Operations:
 • insert(key, value)
 • Adds the (key,value) pair into the dictionary
 • If the key already has a value, overwrite the old value
 • Consequence: Keys cannot be repeated
 • find(key)
 • Returns the value associated with the given key
 • delete(key)
 • Remove the key (and its associated value)
Less Naïve attempts

- Binary Search Trees (Friday)
- Tries (Project)
- AVL Trees (Today)
- B-Trees (this week)
- HashTables (next week)
- Red-Black Trees (not included in this course)
- Splay Trees (not included in this course)
Dictionary Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Binary Search Tree

• Binary Tree
 • Definition:
 • Every node has at most 2 children

• Order Property
 • All keys in the left subtree are smaller than the root
 • All keys in the right subtree are larger than the root
 • Apply recursively

• Why?
 • Makes searching quicker
 • Worst case: tree’s height
Find Operation (recursive)

```java
find(key, root){
    if (root == Null){
        return Null;
    }
    if (key == root.key){
        return root.value;
    }
    if (key < root.key){
        return find(key, root.left);
    }
    if (key > root.key){
        return find(key, root.right);
    }
    return Null;
}
```
Find Operation (iterative)

```java
find(key, root){
    while (root != Null && key != root.key){
        if (key < root.key){
            root = root.left;
        }
        else if (key > root.key){
            root = root.right;
        }
    }
    if (root == Null){
        return Null;
    }
    return root.value;
}
```
Insert Operation (iterative)

```java
insert(key, value, root) {
    if (root == Null) { this.root = new Node(key, value); }
    parent = Null;
    while (root != Null && key != root.key) {
        parent = root;
        if (key < root.key) { root = root.left; }
        else if (key > root.key) { root = root.right; }
    }
    if (root != Null) { root.value = value; }
    else if (key < parent.key) { parent.left = new Node(key, value); }
    else { parent.right = new Node(key, value); }
}
```

Note: Insert happens only at the leaves!
Delete Operation (iterative)

delete(key, root){
 while (root != Null && key != root.key){
 if (key < root.key){ root = root.left; }
 else if (key > root.key){ root = root.right; }
 }
 if (root == Null){ return; }
 // Now root is the node to delete, what happens next?
}
Delete – 3 Cases

- 0 Children (i.e. it’s a leaf)
- 1 Child
- 2 Children
Finding the Max and Min

• Max of a BST:
 • Right-most Thing

• Min of a BST:
 • Left-most Thing

```java
maxNode(root){
    if (root == Null){ return Null; }
    while (root.right != Null){
        root = root.right;
    }
    return root;
}

minNode(root){
    if (root == Null){ return Null; }
    while (root.left != Null){
        root = root.left;
    }
    return root;
}
```
Delete Operation (iterative)

delete(key, root){
 while (root != Null && key != root.key){
 if (key < root.key){ root = root.left; }
 else if (key > root.key){ root = root.right; }
 }
 if (root == Null){ return; }
 if (root has no children){
 make parent point to Null instead;
 }
 if (root has one child){
 make parent point to that child instead;
 }
 if (root has two children){
 make parent point to either the max from the left or min from the right
 }
}
Improving the worst case

• How can we get a better worst case running time?
“Balanced” Binary Search Trees

• We get better running times by having “shorter” trees
• Trees get tall due to them being “sparse” (many one-child nodes)
• Idea: modify how we insert/delete to keep the tree more “full”
Idea 1: Both Subtrees of Root have same # Nodes
Idea 2: Both Subtrees of Root have same height
Idea 3: Both Subtrees of every Node have same # Nodes
Idea 4: Both Subtrees of every Node have same height
AVL Tree

- A Binary Search tree that maintains that the left and right subtrees of every node have heights that differ by at most one.
 - height of left subtree and height of right subtree off by at most 1
 - Not too weak (ensures trees are short)
 - Not too strong (works for any number of nodes)

- Idea of AVL Tree:
 - When you insert/delete nodes, if tree is “out of balance” then modify the tree
 - Modification = “rotation”
Is it an AVL Tree?
Using AVL Trees

• Each node has:
 • Key
 • Value
 • Height
 • Left child
 • Right child

 Key = 9
 Value = “hello”
 Height = 3
 Left = Node 3
 Right = Node 10
Inserting into an AVL Tree

• Starts out the same way as BST:
 • “Find” where the new node should go
 • Put it in the right place (it will be a leaf)

• Next check the balance
 • If the tree is still balanced, you’re done!
 • Otherwise we need to do rotations
Insert Example
Insert Example

-1
Not Balanced!

Solution: rotate the whole tree to the right

Height = 3
Height = 1
Balanced!
Right Rotation

• Make the left child the new root
• Make the old root the right child of the new
• Make the new root’s right subtree the old root’s left subtree
Insert Example

```
20
```

```
0  1  3  6  10  11  16  18
```

```
```
Not Balanced!

Solution: rotate the deepest unbalanced root to the left
Balanced!
Left Rotation

• Make the right child the new root
• Make the old root the left child of the new
• Make the new root’s left subtree the old root’s right subtree
Insertion Story So Far

- After insertion, update the heights of the node’s ancestors
- Check for unbalance
- If unbalanced then at the deepest unbalanced root:
 - If the left subtree was deeper then rotate right
 - If the right subtree was deeper then rotate left

This is incomplete!
There are some cases where this doesn’t work!

Diagram:

1. Insert 7
2. Right Rotation
3. Insertion after rotation
Insertion Story So Far

- After insertion, update the heights of the node’s ancestors
- Check for unbalance
- If unbalanced then at the deepest unbalanced root:
 - Case LL: If we inserted in the left subtree of the left child then rotate right
 - Case RR: If we inserted in the right subtree of the right child then rotate left
 - Case LR: If we inserted into the right subtree of the left child then ???
 - Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 rotations!
Case LR

- From deepest unbalanced root:
 - Rotate left at the left child
 - Rotate right at the root
Case LR in General

- Imbalance caused by inserting in the left child’s right subtree
- Rotate left at the left child
- Rotate right at the unbalanced node
Case RL in General

- Imbalance caused by inserting in the right child’s left subtree
- Rotate right at the right child
- Rotate left at the unbalanced node
Insert Summary

• After a BST insertion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:
 • Case LL: If we inserted in the left subtree of the left child then: rotate right
 • Case RR: If we inserted in the right subtree of the right child then: rotate left
 • Case LR: If we inserted into the right subtree of the left child then: rotate left at the left child and then rotate right at the root
 • Case RL: If we inserted into the left subtree of the right child then: rotate right at the right child and then rotate left at the root
• Done after either reaching the root or applying one of the above cases
Delete Summary

• Tldr: same cases, reverse direction of rotation, may need to repeat with ancestors
• After a BST deletion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:
 • Case LL: If we deleted in the left subtree of the left child then: rotate left
 • Case RR: If we deleted in the right subtree of the right child then: rotate right
 • Case LR: If we deleted into the right subtree of the left child then: rotate right at the left child and then rotate left at the root
 • Case RL: If we deleted into the left subtree of the right child then: rotate left at the right child and then rotate right at the root
• Continue checking until reach the root