CSE 332 Winter 2024
Lecture 7: Dictionaries, BSTs
Nathan Brunelle
http://www.cs.uw.edu/332
Warm Up: Tree Method

Red box represents a problem instance

Blue value represents time spent at that level of recursion

\[T(n) = 2T\left(\frac{n}{2}\right) + 4n^2 \]

\(T(1) = 1 \)

\(\frac{n}{2^i} \)

\[\Rightarrow 4 \cdot 2^i \frac{n^2}{4^i} \text{ work at level } i \]

\(\log_2 n \) levels of recursion

\[T(n) = \sum_{i=1}^{\log_2 n} 4 \cdot 2^i \frac{n^2}{4^i} = 4n^2 \sum_{i=1}^{\log_2 n} \frac{1}{2^i} = \Theta(n^2) \]
Warm Up: Which is better?

Both of the following build a binary heap within an unordered array. Which is better?

`buildHeapDown(arr){
 for(int i = arr.length; i>0; i--){
 percolateDown(arr, i);
 }
}

buildHeapUp(arr){
 for(int i = 0; i<arr.length; i++){
 percolateUp(arr, i);
 }
}
Dictionary (Map) ADT

- Contents:
 - Sets of key+value pairs
 - Keys must be comparable

- Operations:
 - `insert(key, value)`
 - Adds the (key,value) pair into the dictionary
 - If the key already has a value, overwrite the old value
 - Consequence: Keys cannot be repeated
 - `find(key)`
 - Returns the value associated with the given key
 - `delete(key)`
 - Remove the key (and its associated value)
Naïve attempts

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>
Less Naïve attempts

• Binary Search Trees (today)
• Tries (Project 1)
• AVL Trees (next week)
• B-Trees (next week)
• HashTables (week after)
• Red-Black Trees (not included in this course)
• Splay Trees (not included in this course)
Naïve attempts

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree (W.C.)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree (average)</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Tree Height

treeHeight(root){
 height = 0;
 if (root.left != Null){
 height = max(height, treeHeight(root.left));
 }
 if (root.right != Null){
 height = max(height, treeHeight(root.right));
 }
 return height;
}
More Tree “Vocab”

• Traversal:
 • An algorithm for “visiting/processing” every node in a tree

• Pre-Order Traversal:
 • Root, Left Subtree, Right Subtree

• In-Order Traversal:
 • Left Subtree, Root, Right Subtree

• Post-Order Traversal
 • Left Subtree, Right Subtree, Root
AorderTraversal(root) {
 if (root.left != Null) {
 process(root.left);
 }
 if (root.right != Null) {
 process(root.right);
 }
 process(root);
}

BorderTraversal(root) {
 process(root);
 if (root.left != Null) {
 process(root.left);
 }
 if (root.right != Null) {
 process(root.right);
 }
}

CorderTraversal(root) {
 if (root.left != Null) {
 process(root.left);
 }
 process(root);
 if (root.right != Null) {
 process(root.right);
 }
}
Binary Search Tree

- **Binary Tree**
 - Definition:

- **Order Property**
 - All keys in the left subtree are smaller than the root
 - All keys in the right subtree are larger than the root

- Why?
Are these BSTs?

A

B

D

C
Find Operation (recursive)

```java
find(key, root){
    if (root == Null){
        return Null;
    }
    if (key == root.key){
        return root.value;
    }
    if (key < root.key){
        return find(key, root.left);
    }
    if (key > root.key){
        return find(key, root.right);
    }
    return Null;
}
```
Find Operation (iterative)

find(key, root){
 while (root != Null && key != root.key){
 if (key < root.key){
 root = root.left;
 } else if (key > root.key){
 root = root.right;
 }
 }
 if (root == Null){
 return Null;
 }
 return root.value;
}
Insert Operation (iterative)

```java
insert(key, value, root){
    if (root == Null){ this.root = new Node(key, value); }
    parent = Null;
    while (root != Null && key != root.key){
        parent = root;
        if (key < root.key){ root = root.left; }
        else if (key > root.key){ root = root.right; }
    }
    if (root != Null){ root.value = value; }
    else if (key < parent.key){ parent.left = new Node(key, value); }
    else{ parent.right = new Node(key, value); }
}
```

Note: Insert happens only at the leaves!
Delete Operation (iterative)

define delete(key, root):
 while (root != Null && key != root.key):
 if (key < root.key):
 root = root.left;
 else if (key > root.key):
 root = root.right;
 if (root == Null):
 return;
 // Now root is the node to delete, what happens next?
}
Delete – 3 Cases

- 0 Children (i.e. it’s a leaf)
- 1 Child
- 2 Children
Finding the Max and Min

• Max of a BST:
 • Right-most Thing

• Min of a BST:
 • Left-most Thing

```java
maxNode(root){
    if (root == Null){ return Null; }
    while (root.right != Null){
        root = root.right;
    }
    return root;
}

minNode(root){
    if (root == Null){ return Null; }
    while (root.left != Null){
        root = root.left;
    }
    return root;
}
```
Delete Operation (iterative)

def delete(key, root):
 while (root != Null && key != root.key):
 if (key < root.key):
 root = root.left;
 else if (key > root.key):
 root = root.right;
 if (root == Null):
 return;
 if (root has no children):
 make parent point to Null instead;
 if (root has one child):
 make parent point to that child instead;
 if (root has two children):
 make parent point to either the max from the left or min from the right
Worst Case Analysis

• For each of Find, insert, Delete:
 • Worst case running time matches height of the tree
• What is the maximum height of a BST with n nodes?
Improving the worst case

• How can we get a better worst case running time?

add shape rules
to keep tree short
“Balanced” Binary Search Trees

- We get better running times by having “shorter” trees
- Trees get tall due to them being “sparse” (many one-child nodes)
- Idea: modify how we insert/delete to keep the tree more “full”
Idea 1: Both Subtrees of Root have same # Nodes

2 \times + 1
Idea 2: Both Subtrees of Root have same height
Idea 3: Both Subtrees of every Node have same # Nodes
Idea 4: Both Subtrees of every Node have same height
Teaser: AVL Tree

- A Binary Search tree that maintains that the left and right subtrees of every node have heights that differ by at most one.
 - Not too weak (ensures trees are short)
 - Not too strong (works for any number of nodes)