CSE 332 Winter 2024
Lecture 6: Priority Queues and recurrences

Nathan Brunelle

http://www.cs.uw.edu/332
ADT: Priority Queue

• What is it?
 • A collection of items and their “priorities”
 • Allows quick access/removal to the “top priority” thing

• What Operations do we need?
 • insert(item, priority)
 • Add a new item to the PQ with indicated priority
 • Usually, smaller priority value means more important
 • deleteMin
 • Remove and return the “top priority” item from the queue
 • Is_empty
 • Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable (i.e. you can use “<” or “compareTo” with it)
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Heap</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>

Note: Assume we know the maximum size of the PQ in advance
Trees for Heaps

• Binary Trees:
 • The branching factor is 2
 • Every node has ≤ 2 children

• Complete Tree:
 • All “layers” are full, except the bottom
 • Bottom layer filled left-to-right
(Min) Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “(Min) Heap Property” of the tree
 • Every node’s priority is ≤ its children’s priority
 • Max Heap Property: every node’s priority is ≥ its children
Representing a Heap

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap
- Index of root:
- Parent of node i:
- Left child of node i:
- Right child of node i:
- Location of the leaves:
Representing a Heap

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap
- Index of root: 1
- Parent of node i: $\lfloor \frac{i}{2} \rfloor$
- Left child of node i: $2i$
- Right child of node i: $2i + 1$
- Location of the leaves: \(\text{last } \left\lfloor \frac{n}{2} \right\rfloor \)
Representing a Heap

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap
- Index of root: 0
- Parent of node i: $\left\lfloor \frac{i+1}{2} \right\rfloor - 1$
- Left child of node i: $2(i + 1) - 1$
- Right child of node i: $2(i + 1)$
- Location of the leaves: last $\left\lfloor \frac{n}{2} \right\rfloor$
Insert Psuedocode

insert(item){
 if(size == arr.length - 1){resize();}
 size++;
 arr[i] = item;
 percolateUp(i)
}
Heap Insert

insert(item){
 put item in the “next open” spot (keep tree complete)
 while (item.priority < parent(item).priority){
 swap item with parent
 }
}
Heap Insert

insert(item){
 put item in the “next open” spot (keep tree complete)
 while (item.priority < parent(item).priority){
 swap item with parent
 }
}
Heap Insert

```cpp
insert(item){
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap Insert

\[
\text{insert}(\text{item})\
\quad \text{put item in the “next open” spot (keep tree complete)}\
\text{while (item.priority < parent(item).priority)}\
\quad \text{swap item with parent}\
\text{Percolate Up}
\]
Heap Insert

```
insert(item){
    put item in the “next open” spot (keep tree complete)
    while (item.priority < parent(item).priority){
        swap item with parent
    }
}
```
Heap deleteMin

def deleteMin():
 min = root
 br = bottom-right item
 move br to the root
 while (br > either of its children):
 swap br with its smallest child
 return min
Heap deleteMin

deleteMin()

 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
Heap deleteMin

deleteMin() {
 min = root
 br = bottom-right item
 move br to the root
 while (br > either of its children) {
 swap br with its smallest child
 }
 return min
}
Heap deleteMin

deleteMin(){
 min = root
 br = bottom-right item
 move br to the root
 while(br > either of its children){
 swap br with its smallest child
 }
 return min
}
Heap deleteMin

deleteMin()

\[
\begin{align*}
\text{min} &= \text{root} \\
\text{br} &= \text{bottom-right item} \\
\text{move br to the root} \\
\text{while}(\text{br} > \text{either of its children}){ \\
\quad \text{swap br with its smallest child} \\
}\} \\
\text{return min}
\end{align*}
\]
Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
 • Take a node that may be smaller than a parent, repeatedly swap with a parent until it is larger than its parent

• Percolate Down:
 • Take a node that may be larger than one of its children, repeatedly swap with smallest child until both children are larger

• Worst case running time of each:
 • $\Theta(\log n)$
Percolate Up

percolateUp(int i){
 int parent = i/2; \ index of parent
 Item val = arr[i]; \ value at current location
 while(i > 1 && arr[i].priority < arr[parent].priority){ \ until location is root or heap property holds
 arr[i] = arr[parent]; \ move parent value to this location
 arr[parent] = val; \ put current value into parent’s location
 i = parent; \ make current location the parent
 parent = i/2; \ update new parent
 }
}
DeleteMin Psuedocode

def DeleteMin()
 theMin = arr[1];
 arr[1] = arr[size];
 size--;
 percolateDown(1);
 return theMin;
}
Percolate Down

```cpp
int left = i*2; \// index of left child
int right = i*2+1; \// index of right child
Item val = arr[i]; \// value at location

while(left <= size){ \// until location is leaf
    int toSwap = right;
    if(right > size || arr[left].priority < arr[right].priority){ \// if there is no right child or if left child is smaller
        toSwap = left; \// swap with left
    } \// now toSwap has the smaller of left/right, or left if right does not exist
    if (arr[toSwap].priority < val.priority){ \// if the smaller child is less than the current value
        arr[i] = arr[toSwap];
        arr[toSwap] = val; \// swap parent with smaller child
        i = toSwap; \// update current node to be smaller child
        left = i*2;
        right = i*2+1;
    }
    else{ return; } \// if we don’t swap, then heap property holds
}
```
Other Operations

• Increase Key
 • Given the index of an item in the PQ, make its priority value larger
 • Min Heap: Then percolate down
 • Max Heap: Then percolate up

• Decrease Key
 • Given the index of an item in the PQ, make its priority value smaller
 • Min Heap: Then percolate up
 • Max Heap: Then percolate down

• Remove
 • Given the item at the given index from the PQ
Binary Search

search(value, sortedArr){
 return helper(value, sortedArr, 0, sortedArr.length);
}

helper(value, arr, low, high){
 if (low == high){ return false; }
 mid = (high + low) / 2;
 if (arr[mid] == value){ return true; }
 if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
 else { return helper(value, arr, low, mid); }
}
Analysis of Recursive Algorithms

• Overall structure of recursion:
 • Do some non-recursive “work”
 • Do one or more recursive calls on some portion of your input
 • Do some more non-recursive “work”
 • Repeat until you reach a base case

• Running time: \(T(n) = T(p_1) + T(p_2) + \cdots + T(p_x) + f(n) \)
 • The time it takes to run the algorithm on an input of size \(n \) is:
 • The sum of how long it takes to run the same algorithm on each smaller input
 • Plus the total amount of non-recursive work done at that step

• Usually:
 • \(T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \)
 • Called “divide and conquer”
 • \(T(n) = T(n - c) + f(n) \)
 • Called “chip and conquer”
How Efficient Is It?

- \(T(n) = 1 + T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \)
- Base case: \(T(1) = 1 \)

\(T(n) \) = “cost” of running the entire algorithm on an array of length \(n \)
Let’s Solve the Recurrence!

\[T(1) = 1 \]
\[T(n) = 1 + T\left(\frac{n}{2}\right) \]

Substitute until \(T(1) \)

So \(\log_2 n \) steps

\[T(n) = \sum_{i=1}^{\log_2 n} 1 = \log_2 n \]

\[T(n) \in \Theta(\log n) \]
Recursive Linear Search

search(value, list){
 if(list.isEmpty) {
 return false;
 }
 if (value == list[0]) {
 return true;
 }
 list.remove(0);
 return search(value, list);
}
Unrolling Method

• Repeatedly substitute the recursive part of the recurrence
 • \(T(n) = T(n - 1) + c \)
 • \(T(n) = T(n - 2) + c + c \)
 • \(T(n) = T(n - 3) + c + c + c \)
 • ...
 • \(T(n) = c + c + c + \cdots + c \)
 • How many \(c \)'s?
Recursive List Summation

```cpp
sum(list){
    return sum_helper(list, 0, list.size);
}
sum_helper(list, low, high){
    if (low == high){ return 0; }
    if (low == high-1){ return list[low]; }
    middle = (high+low)/2;
    return sum_helper(list, low, middle) + sum_helper(list, middle, high);
}
```
Loop Unrolling Method

\[T(n) = 2T\left(\frac{n}{2} \right) + c \]
Loop Unrolling Method

- $T(n) = 2T\left(\frac{n}{2}\right) + c$
- $T(n) = 2\left(2T\left(\frac{n}{4}\right) + c\right) + c = 4T\left(\frac{n}{4}\right) + 3c$
- $T(n) = 4\left(2T\left(\frac{n}{8}\right) + c\right) + 3c = 8T\left(\frac{n}{8}\right) + 7c$
- ...after $i - 1$ substitutions
- $T(n) = 2^i T\left(\frac{n}{2^i}\right) + (2^i - 1)c$
 - $T\left(\frac{n}{2^i}\right) = T(1)$ when $i = \log_2 n$
- $T(n) = 2^{\log_2 n} T(1) + (2^{\log_2 n} - 1)c = n \cdot c_0 + cn - c = \Theta(n)$
Tree Method

\[T(n) = 2T\left(\frac{n}{2}\right) + c \]

\[\Rightarrow 2^i \cdot c \text{ work per level} \]

\[\log_2 n \text{ levels of recursion} \]

\[T(n) = \sum_{i=1}^{\log_2 n} 2^i \cdot c \]
Recursive List Summation

\[T(n) = \sum_{i=1}^{\log_2 n} 2^i \cdot c \]

\[= c \cdot \sum_{i=1}^{\log_2 n} 2^i \]

\[= c \left(\frac{1 - 2^{\log_2 n}}{1 - 2} \right) \]