CSE 332 Winter 2024
Lecture 4: Algorithm Analysis and Priority Queues

Nathan Brunelle

http://www.cs.uw.edu/332
Warm Up

Give the worst case running time for the following code

doSomething(List myList){
 n = myList.size();
 x = 0;
 for (i=0; i < n; i++){
 for (j=0; j < i; j++){
 x++;
 }
 }
 return x;
}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:
 • How many times will it run?
 • How long does it take to run?
 • Does this change with the input size?

n^2
1 + 2 + 3 + 4 + 5 + \ldots + n = \frac{n(n+1)}{2}

\[
\begin{align*}
4 &= \frac{20}{2} = 10
\end{align*}
\]
Goals for Algorithm Analysis

• Identify a function which maps the algorithm’s input size to a measure of resources used
 • Domain of the function: sizes of the input
 • Number of characters in a string, number of items in a list, number of pixels in an image
 • Codomain of the function: counts of resources used
 • Number of times the algorithm adds two numbers together, number times the algorithm does a > or < comparison, maximum number of bytes of memory the algorithm uses at any time

• Important note: Make sure you know the “units” of your domain and codomain!
 • Domain = inputs to the function
 • Codomain = outputs to the function
Comparing
Comparing Running Times

• Suppose I have these algorithms, all of which have the same input/output behavior:
 • Algorithm A’s worst case running time is $10n + 900$
 • Algorithm B’s worst case running time is $100n - 50$
 • Algorithm C’s worst case running time is $\frac{n^2}{100}$

• Which algorithm is best?
What we need

• A way of comparing functions that:
 • Ignores constants and non-dominant terms
 • Looks at long term trends
 • Ignores “small” inputs
\[f(n) = \Theta(g(n)) \]

\[f(n) = O(g(n)) \]

\[f(n) = \Omega(g(n)) \]
Asymptotic Notation

- $O(g(n))$
 - The set of functions with asymptotic behavior less than or equal to $g(n)$
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \leq c \cdot g(n)$

- $\Omega(g(n))$
 - The set of functions with asymptotic behavior greater than or equal to $g(n)$
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \geq c \cdot g(n)$

- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$
• \(f(n) \in O(g(n)) \)
 • \(f(n)^{\prime} \leq g(n) \)
 • Eventually \(c \cdot g(n) \) will become and stay bigger
 • An algorithm whose running time is \(f(n) \) will eventually do fewer operations than an algorithm whose running time is \(g(n) \)
 • An algorithm whose running time is \(f(n) \) is faster than an algorithm whose running time is \(g(n) \)
Asymptotic Notation Example

• Show: $10n + 100 \in O(n^2)$

 • Technique: find values $c > 0$ and $n_0 > 0$ such that $\forall n > n_0. 10n + 100 \leq c \cdot n^2$

• Proof:

 $10n + 100 \leq c \cdot n^2$

 $10n + 100 \leq 10n^2$

 $-10n^2 + 10n + 100 \leq 0$

 $-10(n^2 - n - 10) \leq 0$

 $c = 10$

 $n_0 = 10$
Asymptotic Notation Example

• Show: $10n + 100 \in O(n^2)$
 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0.\ 10n + 100 \leq c \cdot n^2$
 • **Proof:** Let $c = 10$ and $n_0 = 6$. Show $\forall n \geq 6.\ 10n + 100 \leq 10n^2$

 $10n + 100 \leq 10n^2$

 $\equiv n + 10 \leq n^2$

 $\equiv 10 \leq n^2 - n$

 $\equiv 10 \leq n(n - 1)$

 This is True because $n(n - 1)$ is strictly increasing and $6(6 - 1) > 10$
Asymptotic Notation Example

• Show: $13n^2 − 50n \in \Omega(n^2)$
 • Technique: find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0.\ 13n^2 − 50n \geq c \cdot n^2$
 • Proof:
Asymptotic Notation Example

• Show: $13n^2 - 50n \in \Omega(n^2)$

 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. 13n^2 - 50n \geq c \cdot n^2$

 • **Proof:** let $c = 12$ and $n_0 = 50$. Show $\forall n \geq 50. 13n^2 - 50n \geq 12n^2$

 $13n^2 - 50n \geq 12n^2$

 $\equiv n^2 - 50n \geq 0$

 $\equiv n^2 \geq 50n$

 $\equiv n \geq 50$

 This is certainly true $\forall n \geq 50$.
Asymptotic Notation Example

• Show: $n^2 \not\in O(n)$
Asymptotic Notation Example

• To Show: $n^2 \notin O(n)$

 • **Technique: Contradiction**

 • **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s. t. $\forall n > n_0, n^2 \leq cn$

Let us derive constant c. For all $n > n_0 > 0$, we know:

 $cn \geq n^2$,

 $c \geq n$.

Since c is lower bounded by n, c cannot be a constant and make this True.

 Contradiction. Therefore $n^2 \notin O(n)$.
Gaining Intuition

• When doing asymptotic analysis of functions:
 • If multiple expressions are added together, ignore all but the “biggest”
 • If \(f(n) \) grows asymptotically faster than \(g(n) \), then \(f(n) + g(n) \in \Theta(f(n)) \)
 • Ignore all multiplicative constants
 • \(f(n) + c \in \Theta(f(n)) \) for any constant \(c \in \mathbb{R} \)
 • Ignore bases of logarithms
 • Do NOT ignore:
 • Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 • Logarithms themselves

• Examples:
 • \(4n + 5 \)
 • \(0.5n \log n + 2n + 7 \)
 • \(n^3 + 2^n + 3n \)
 • \(n \log(10n^2) \)
More Examples

• Is each of the following True or False?
 • $4 + 3n \in O(n)$
 • $n + 2 \log n \in O(\log n)$
 • $\log n + 2 \in O(1)$
 • $n^{50} \in O(1.1^n)$
 • $3^n \in \Theta(2^n)$
Common Categories

• $O(1)$ “constant”
• $O(\log n)$ “logarithmic”
• $O(n)$ “linear”
• $O(n \log n)$ “log-linear”
• $O(n^2)$ “quadratic”
• $O(n^3)$ “cubic”
• $O(n^k)$ “polynomial”
• $O(k^n)$ “exponential”
Defining your running time function

• Worst-case complexity:
 • max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
 • min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
 • avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
 • max total number of steps algorithm takes on M “most challenging” consecutive inputs, divided by M (i.e., divide the max total sum by M).
ADT: Queue

• What is it?
 • A “First In First Out” (FIFO) collection of items

• What Operations do we need?
 • Enqueue
 • Add a new item to the queue
 • Dequeue
 • Remove the “oldest” item from the queue
 • Is_empty
 • Indicate whether or not there are items still on the queue
ADT: Priority Queue

• What is it?
 • A collection of items and their “priorities”
 • Allows quick access/removal to the “top priority” thing

• What Operations do we need?
 • insert(item, priority)
 • Add a new item to the PQ with indicated priority
 • Usually, smaller priority value means more important
 • deleteMin
 • Remove and return the “top priority” item from the queue
 • Is_empty
 • Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
 (i.e. you can use “<” or “compareTo” with it)
Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Applications?
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Circular Array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Assume we know the maximum size of the PQ in advance