Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal’s has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal’s selects to add next.

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle.

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in A
- All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)
$O(E \log V)$
General MST Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects (typically implicitly)

Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects

Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A

e is the min-weight edge that grows the tree
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap $O(E \log V)$
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end) {
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start distance = 0;
    while (!PQ.isEmpty) {
        current = PQ.extractmin();
        if (current.known) continue;
        current.known = true;
        for (neighbor : current.neighbors) {
            if (!neighbor.known) {
                new_dist = current.distance + weight(current, neighbor);
                if (neighbor.dist != ∞) PQ.insert(new_dist, neighbor);
                else if (new_dist < neighbor.distance) {
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist, neighbor); }
            }
        }
    }
    return end.distance;
}
```
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
7 Bridges of Königsberg

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?
Euler Path Problem

• Path:
 • A sequence of nodes $v_1, v_2, ...$ such that for every consecutive pair are connected by an edge (i.e. (v_i, v_{i+1}) is an edge for each i in the path)

• Euler Path:
 • A path such that every edge in the graph appears exactly once
 • If the graph is not simple then some pairs need to appear multiple times!

• Euler path problem:
 • Given an undirected graph $G = (V, E)$, does there exist an Euler path for G?
Examples

• Which of the graphs below have an Euler path?

No Euler path exists!

Euler path exists!
A, B, D, A, C, D

Euler path exists!
A, B, C, D, A, C, B, D
Euler’s Theorem

• A graph has an Euler Path if and only if it is connected and has exactly 0 or 2 nodes with odd degree.
Algorithm for the Euler Path Problem

• Given an undirected graph $G = (V, E)$, does there exist an Euler path for G?

• Algorithm:
 • Check if the graph is connected
 • Check the degree of each node
 • If the number of nodes with odd degree is 0 or 2, return true
 • Otherwise return false

• Running time?
A Seemingly Similar Problem

• **Hamiltonian Path:**
 - A path that includes every node in the graph exactly once

• **Hamiltonian Path Problem:**
 - Given a graph $G = (V, E)$, does that graph have a Hamiltonian Path?

True!

A, B, C, E, G, H, F, D
Algorithms for the Hamiltonian Path Problem

• Option 1:
 • Explore all possible simple paths through the graph
 • Check to see if any of those are length V

• Option 2:
 • Write down every sequence of nodes
 • Check to see if any of those are a path

• Both options are examples of an **Exhaustive Search ("Brute Force") algorithm**
Option 2: List all sequences, look for a path

• Running time:
 • $G = (V, E)$
 • Number of permutations of V is $|V|!$
 • $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$
 • How does $n!$ compare with 2^n?
 • $n! \in \Omega(2^n)$
 • Exponential running time!
Option 1: Explore all simple paths, check for one of length V

- Running time:
 - $G = (V, E)$
 - Number of paths
 - Pick a first node ($|V|$ choices)
 - Pick a neighbor (up to $|V| - 1$ choices)
 - Pick a neighbor (up to $|V| - 2$ choices)
 - Repeat $|V| - 1$ total times
 - Overall: $|V|!$ paths
 - Exponential running time
Running Times

Running times we’ve seen:
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n^2)$
- $\Theta(2^n)$
Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{35} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>30</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{35} years</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Tractability

• **Tractable:**
 • Feasible to solve in the “real world”

• **Intractable:**
 • Infeasible to solve in the “real world”

• Whether a problem is considered “tractable” or “intractable” depends on the use case
 • For machine learning, big data, etc. tractable might mean $O(n)$ or even $O(\log n)$
 • For most applications it’s more like $O(n^3)$ or $O(n^2)$

• A strange pattern:
 • Most “natural” problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 • It’s rare to have problems which require a running time of n^5, for example
A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)

- The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)

Examples:

- The set of all problems that can be solved by an algorithm with running time $O(n)$
 - Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
- The set of all problems that can be solved by an algorithm with running time $O(n^2)$
 - Contains: everything above as well as sorting, Euler path
- The set of all problems that can be solved by an algorithm with running time $O(n!)$
 - Contains: everything we’ve seen in this class so far
Complexity Classes and Tractability

• To explore what problems are and are not tractable, we give some complexity classes special names:

• Complexity Class P:
 • Stands for “Polynomial”
 • The set of problems which have an algorithm whose running time is $O(n^p)$ for some choice of $p \in \mathbb{R}$.
 • We say all problems belonging to P are “Tractable”

• Complexity Class EXP:
 • Stands for “Exponential”
 • The set of problems which have an algorithm whose running time is $O(2^{np})$ for some choice of $p \in \mathbb{R}$
 • We say all problems belonging to $EXP - P$ are “Intractable”
 • Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong to EXP, but we’re not going to worry about those in this class
EXP and P

Important!

$P \subset EXP$

Every problem within P is also within EXP

The intractable ones are the problems within EXP but NOT P
Important!
Some of the problems listed in EXP could also be members of P
Since membership is determined by a problem’s most efficient algorithm, knowing if a problem belongs to P requires knowing the best algorithm possible!
Studying Complexity and Tractability

• Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability

• The goal for each problem is to either
 • Find an efficient algorithm if it exists
 • i.e. show it belongs to P
 • Prove that no efficient algorithm exists
 • i.e. show it does not belong to P

• Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
 • If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
 • It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$
Some problems in EXP seem “easier”

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
 - It’s “hard” to look at a graph and determine whether it has a Hamiltonian Path
 - It’s “easy” to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 - It’s easy to verify whether a given path is a Hamiltonian path
Class NP

• NP
 • The set of problems for which a candidate solution can be verified in polynomial time
 • Stands for “Non-deterministic Polynomial”
 • Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 • Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search

• $P \subseteq NP$
 • Why?
$EXP \supset NP \supseteq P$

- **EXP**
 - Exponential
 - Upper bounded by 2^{n^p}

- **NP**
 - Nondeterministic Polynomial
 - Verified in n^p time

- **P**
 - Polynomial
 - Upper bounded by n^p

Gap?

Unknown!
Solving and Verifying Hamiltonian Path

• Give an algorithm to solve Hamiltonian Path
 • Input: \(G = (V, E) \)
 • Output: True if \(G \) has a Hamiltonian Path
 • Algorithm: Check whether each permutation of \(V \) is a path.
 • Running time: \(|V|! \), so does not show whether it belongs to \(P \)

• Give an algorithm to verify Hamiltonian Path
 • Input: \(G = (V, E) \) and a sequence of nodes
 • Output: True if that sequence of nodes is a Hamiltonian Path
 • Algorithm:
 • Check that each node appears in the sequence exactly once
 • Check that the sequence is a path
 • Running time: \(O(V \cdot E) \), so it belongs to \(NP \)
Party Problem

Draw Edges between people who don’t get along
How many people can I invite to a party if everyone must get along?
Independent Set

• Independent set:
 • $S \subseteq V$ is an independent set if no two nodes in S share an edge

• Independent Set Problem:
 • Given a graph $G = (V, E)$ and a number k, determine whether there is an independent set S of size k
Example

Independent set of size 6
Solving and Verifying Independent Set

• Give an algorithm to solve independent set
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has an independent set of size k

• Give an algorithm to verify independent set
 • Input: $G = (V, E)$, a number k, and a set $S \subseteq V$
 • Output: True if S is an independent set of size k
Generalized Baseball
Generalized Baseball

Need to place defenders on bases such that every edge is defended

How many defenders would suffice?
Vertex Cover

• Vertex Cover:
 • $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

• Vertex Cover Problem:
 • Given a graph $G = (V, E)$ and a number k, determine if there is a vertex cover C of size k
Example

Vertex cover of size 5
Solving and Verifying Vertex Cover

• Give an algorithm to solve vertex cover
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has a vertex cover of size k

• Give an algorithm to verify vertex cover
 • Input: $G = (V, E)$, a number k, and a set $S \subseteq E$
 • Output: True if S is a vertex cover of size k
\[\text{EXP} \supset \text{NP} \supseteq \text{P} \]

\[P = \text{NP} \text{ or } P \subset \text{NP} \]
Way Cool!

S is an independent set of G iff $V - S$ is a vertex cover of G
Way Cool!

\[S \text{ is an independent set of } G \text{ iff } V - S \text{ is a vertex cover of } G \]
Solving Vertex Cover and Independent Set

• Algorithm to solve vertex cover
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has a vertex cover of size k
 • Check if there is an Independent Set of G of size $|V| - k$

• Algorithm to solve independent set
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has an independent set of size k
 • Check if there is a Vertex Cover of G of size $|V| - k$

Either both problems belong to P, or else neither does!
NP-Complete

• A set of “together they stand, together they fall” problems
• The problems in this set either all belong to P, or none of them do
• Intuitively, the “hardest” problems in NP
• Collection of problems from NP that can all be “transformed” into each other in polynomial time
 • Like we could transform independent set to vertex cover, and vice-versa
 • We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and …
$\text{EXP} \supset \text{NP} - \text{Complete} \supseteq \text{NP} \supseteq \text{P}$

$P = NP$ iff some problem from $\text{NP} - \text{Complete}$ belongs to P
Overview

• Problems not belonging to P are considered intractable
• The problems within NP have some properties that make them seem like they might be tractable, but we’ve been unsuccessful with finding polynomial time algorithms for many
• The class NP — $Complete$ contains problems with the properties:
 • All members are also members of NP
 • All members of NP can be transformed into every member of NP — $Complete$
 • Therefore if any one member of NP — $Complete$ belongs to P, then $P = NP$
Why should YOU care?

• If you can find a polynomial time algorithm for any $NP - Complete$ problem then:
 • You will win $1million
 • You will win a Turing Award
 • You will be world famous
 • You will have done something that no one else on Earth has been able to do in spite of the above!

• If you are told to write an algorithm a problem that is $NP - Complete$
 • You can tell that person everything above to set expectations
 • Change the requirements!
 • **Approximate the solution**: Instead of finding a path that visits every node, find a path that visits at least 75% of the nodes
 • **Add Assumptions**: problem might be tractable if we can assume the graph is acyclic, a tree
 • **Use Heuristics**: Write an algorithm that’s “good enough” for small inputs, ignore edge cases