CSE 332 Autumn 2023
Lecture 25: Minimum Spanning Trees, P & NP

Nathan Brunelle

http://www.cs.uw.edu/332
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree A

Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal’s has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal’s selects to add next.

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle.

We can cut the graph therefore into 2 disjoint sets:
 • nodes reachable from G using edges in A
 • All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat $V - 1$ times:
Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$
General MST Algorithm

Start with an empty tree A
Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects (typically implicitly)
Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
Pick a cut $(S, V - S)$ which A respects
Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A
e is the min-weight edge that grows the tree
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap

$O(E \log V)$
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}  
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);} 
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }  
            }
        }
    }
    return end.distance;
}
```
The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?
Euler Path Problem

• Path:
 • A sequence of nodes v_1, v_2, \ldots such that for every consecutive pair are connected by an edge (i.e. (v_i, v_{i+1}) is an edge for each i in the path)

• Euler Path:
 • A path such that every edge in the graph appears exactly once
 • If the graph is not simple then some pairs need to appear multiple times!

• Euler path problem:
 • Given an undirected graph $G = (V, E)$, does there exist an Euler path for G?
Examples

• Which of the graphs below have an Euler path?

No Euler path exists!

Euler path exists!
\(A, B, D, A, C, D\)

Euler path exists!
\(A, B, C, D, A, C, B, D\)
Euler’s Theorem

• A graph has an Euler Path if and only if it is connected and has exactly 0 or 2 nodes with odd degree.
Algorithm for the Euler Path Problem

- Given an undirected graph $G = (V, E)$, does there exist an Euler path for G?

- Algorithm:
 - Check if the graph is connected
 - Check the degree of each node
 - If the number of nodes with odd degree is 0 or 2, return true
 - Otherwise return false

- Running time?
A Seemingly Similar Problem

• Hamiltonian Path:
 • A path that includes every node in the graph exactly once

• Hamiltonian Path Problem:
 • Given a graph $G = (V, E)$, does that graph have a Hamiltonian Path?

True!

A, B, C, E, G, H, F, D
Algorithms for the Hamiltonian Path Problem

• Option 1:
 • Explore all possible simple paths through the graph
 • Check to see if any of those are length V

• Option 2:
 • Write down every sequence of nodes
 • Check to see if any of those are a path

• Both options are examples of an Exhaustive Search ("Brute Force") algorithm
Option 2: List all sequences, look for a path

• Running time:
 • $G = (V, E)$
 • Number of permutations of V is $|V|!$
 • $n! = n \cdot (n - 1) \cdot (n - 2) \cdot \ldots \cdot 2 \cdot 1$
 • How does $n!$ compare with 2^n?
 • $n! \in \Omega(2^n)$
 • Exponential running time!
Option 1: Explore all simple paths, check for one of length V

- Running time:
 - $G = (V, E)$
 - Number of paths
 - Pick a first node ($|V|$ choices)
 - Pick a neighbor (up to $|V| - 1$ choices)
 - Pick a neighbor (up to $|V| - 2$ choices)
 - Repeat $|V| - 1$ total times
 - Overall: $|V|!$ paths
 - Exponential running time
Running Times

Running times we’ve seen:
• $\Theta(1)$
• $\Theta(\log n)$
• $\Theta(n)$
• $\Theta(n \log n)$
• $\Theta(n^2)$
• $\Theta(2^n)$
Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>30</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Tractability

• Tractable:
 • Feasible to solve in the “real world”

• Intractable:
 • Infeasible to solve in the “real world”

• Whether a problem is considered “tractable” or “intractable” depends on the use case
 • For machine learning, big data, etc. tractable might mean $O(n)$ or even $O(\log n)$
 • For most applications it’s more like $O(n^3)$ or $O(n^2)$

• A strange pattern:
 • Most “natural” problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 • It’s rare to have problems which require a running time of n^5, for example
Complexity Classes

• A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)

 • The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)

• Examples:

 • The set of all problems that can be solved by an algorithm with running time $O(n)$
 • Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.

 • The set of all problems that can be solved by an algorithm with running time $O(n^2)$
 • Contains: everything above as well as sorting, Euler path

 • The set of all problems that can be solved by an algorithm with running time $O(n!)$
 • Contains: everything we’ve seen in this class so far
Complexity Classes and Tractability

• To explore what problems are and are not tractable, we give some complexity classes special names:

• Complexity Class P:
 • Stands for “Polynomial”
 • The set of problems which have an algorithm whose running time is $O(n^p)$ for some choice of $p \in \mathbb{R}$.
 • We say all problems belonging to P are “Tractable”

• Complexity Class EXP:
 • Stands for “Exponential”
 • The set of problems which have an algorithm whose running time is $O(2^{n^p})$ for some choice of $p \in \mathbb{R}$
 • We say all problems belonging to $EXP - P$ are “Intractable”
 • Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong to EXP, but we’re not going to worry about those in this class
EXP and P

EXP
Exponential
Upper bounded by 2^{n^p}

P
P
Polynomial
Upper bounded by n^p

Important!
$P \subset EXP$
Every problem within P is also within EXP
The intractable ones are the problems within EXP but NOT P
Important!
Some of the problems listed in EXP could also be members of P.
Since membership is determined by a problem's most efficient algorithm, knowing if a problem belongs to P requires knowing the best algorithm possible!
Studying Complexity and Tractability

• Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability

• The goal for each problem is to either
 • Find an efficient algorithm if it exists
 • i.e. show it belongs to P
 • Prove that no efficient algorithm exists
 • i.e. show it does not belong to P

• Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
 • If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
 • It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$
Some problems in EXP seem “easier”

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check

- Hamiltonian Path:
 - It’s “hard” to look at a graph and determine whether it has a Hamiltonian Path
 - It’s “easy” to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 - It’s easy to verify whether a given path is a Hamiltonian path
Class NP

- NP
 - The set of problems for which a candidate solution can be verified in polynomial time
 - Stands for “Non-deterministic Polynomial”
 - Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 - Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search

- $P \subseteq NP$
 - Why?
\[EXP \supset NP \supseteq P \]

EXP
- Exponential
- Upper bounded by \(2^{np} \)

NP
- Nondeterministic Polynomial
- Verified in \(np \) time

P
- Polynomial
- Upper bounded by \(np \)

Gap?
- Unknown!
Solving and Verifying Hamiltonian Path

• Give an algorithm to solve Hamiltonian Path
 • Input: $G = (V, E)$
 • Output: True if G has a Hamiltonian Path
 • Algorithm: Check whether each permutation of V is a path.
 • Running time: $|V|!$, so does not show whether it belongs to P

• Give an algorithm to verify Hamiltonian Path
 • Input: $G = (V, E)$ and a sequence of nodes
 • Output: True if that sequence of nodes is a Hamiltonian Path
 • Algorithm:
 • Check that each node appears in the sequence exactly once
 • Check that the sequence is a path
 • Running time: $O(V \cdot E)$, so it belongs to NP
Party Problem

Draw Edges between people who don’t get along
How many people can I invite to a party if everyone must get along?
Independent Set

• Independent set:
 • $S \subseteq V$ is an independent set if no two nodes in S share an edge

• Independent Set Problem:
 • Given a graph $G = (V, E)$ and a number k, determine whether there is an independent set S of size k
Example

Independent set of size 6
Solving and Verifying Independent Set

• Give an algorithm to solve independent set
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has an independent set of size k

• Give an algorithm to verify independent set
 • Input: $G = (V, E)$, a number k, and a set $S \subseteq V$
 • Output: True if S is an independent set of size k
Generalized Baseball
Generalized Baseball

Need to place defenders on bases such that every edge is defended

How many defenders would suffice?
Vertex Cover

• Vertex Cover:
 • $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

• Vertex Cover Problem:
 • Given a graph $G = (V, E)$ and a number k, determine if there is a vertex cover C of size k
Example

Vertex cover of size 5
Solving and Verifying Vertex Cover

• Give an algorithm to solve vertex cover
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has a vertex cover of size k

• Give an algorithm to verify vertex cover
 • Input: $G = (V, E)$, a number k, and a set $S \subseteq E$
 • Output: True if S is a vertex cover of size k
EXP \supset NP \supseteq P

- **P** = \(n^p \) or **P** \(\subset NP \)

- **EX**
 - Exponential
 - Upper bounded by \(2^{n^p} \)

- **NP**
 - Nondeterministic Polynomial
 - Verified in \(n^p \) time
 - Checkers
 - Go
 - Chess

- **P**
 - Polynomial
 - Upper bounded by \(n^p \)
 - Sorting
 - Shortest Path
 - Euler Path
 - Cryptography
 - Prime factorization

- **EXP**
 - Exponential
 - Upper bounded by \(2^{n^p} \)

- **NP**
 - Nondeterministic Polynomial
 - Verified in \(n^p \) time

- **P** = **NP** or **P** \(\subset NP \)

Gap?

Unknown!
Way Cool!

S is an independent set of G iff $V - S$ is a vertex cover of G
Way Cool!

S is an independent set of G iff \(V - S \) is a vertex cover of \(G \)
Solving Vertex Cover and Independent Set

• Algorithm to solve vertex cover
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has a vertex cover of size k
 • Check if there is an Independent Set of G of size $|V| - k$

• Algorithm to solve independent set
 • Input: $G = (V, E)$ and a number k
 • Output: True if G has an independent set of size k
 • Check if there is a Vertex Cover of G of size $|V| - k$

Either both problems belong to P, or else neither does!
NP-Complete

- A set of “together they stand, together they fall” problems
- The problems in this set either all belong to P, or none of them do
- Intuitively, the “hardest” problems in NP
- Collection of problems from NP that can all be “transformed” into each other in polynomial time
 - Like we could transform independent set to vertex cover, and vice-versa
 - We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...
\[\text{EXP} \supset \text{NP – Complete} \supseteq \text{NP} \supseteq \text{P} \]

\(P = \text{NP} \) iff some problem from \(\text{NP – Complete} \) belongs to \(\text{P} \)

Diagram:
- EXP
 - Checkers
 - Go
 - Chess
- NP
 - Vertex Cover
 - Independent Set
 - Hamiltonian Path
- NP – Complete
 - Cryptography
 - Prime factorization
- P
 - Sorting
 - Shortest Path
 - Euler Path

Gap? Unknown!
Overview

• Problems not belonging to P are considered intractable
• The problems within NP have some properties that make them seem like they might be tractable, but we’ve been unsuccessful with finding polynomial time algorithms for many
• The class $NP – Complete$ contains problems with the properties:
 • All members are also members of NP
 • All members of NP can be transformed into every member of $NP – Complete$
 • Therefore if any one member of $NP – Complete$ belongs to P, then $P = NP$
Why should YOU care?

• If you can find a polynomial time algorithm for any NP — *Complete* problem then:
 • You will win 1 million
 • You will win a Turing Award
 • You will be world famous
 • You will have done something that no one else on Earth has been able to do in spite of the above!

• If you are told to write an algorithm a problem that is NP — *Complete*
 • You can tell that person everything above to set expectations
 • Change the requirements!
 • **Approximate the solution:** Instead of finding a path that visits every node, find a path that visits at least 75% of the nodes
 • **Add Assumptions:** problem might be tractable if we can assume the graph is acyclic, a tree
 • **Use Heuristics:** Write an algorithm that’s “good enough” for small inputs, ignore edge cases