Bank Account

Public static final Object BANK = new Object();
class BankAccount {
 ...
 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}
 synchronized void transferTo(int amt, BankAccount a) {
 timer.start();
 lk.lock();
 other thread
 }
}
The Deadlock

Expected Behavior:
Thread 2 items from a stack are popped in LIFO order

Thread 1:

x.transferTo(1,y);

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after deposit
release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo
The Deadlock

Expected Behavior:
Thread 2 items from a stack are popped in LIFO order

Thread 1:

x.transferTo(1,y);

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after deposit
release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo
Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a task and different threads may obtain them in a different order

• Option 1:
 • Have a coarser lock granularity
 • E.g. one lock for ALL bank accounts

• Option 2:
 • Have a finer critical section so that only one lock is needed at a time
 • E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked separately

• Option 3:
 • Force the threads to always acquire the locks in the same order
 • E.g. make transferTo acquire both locks before doing either the withdraw or deposit, make sure both threads agree on the order to acquire
Option 1: Coarser Locking

static final Object BANK = new Object();
class BankAccount {

 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}
 void transferTo(int amt, BankAccount a) {
 synchronized(BANK){
 this.withdraw(amt);
 a.deposit(amt);
 }
 }
}
Option 2: Finer Critical Section

class BankAccount {
 ...
 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}
 void transferTo(int amt, BankAccount a) {
 synchronized(this){
 this.withdraw(amt);
 }
 synchronized(a){
 a.deposit(amt);
 }
 }
}
Option 3: First Get All Locks In A Fixed Order

class BankAccount {

 synchronized void withdraw(int amt) {...}
 synchronized void deposit(int amt) {...}
 void transferTo(int amt, BankAccount a) {
 if (this.acctNum < a.acctNum){
 synchronized(this){
 synchronized(a){
 this.withdraw(amt);
 a.deposit(amt);
 }
 }
 } else {
 synchronized(a){
 synchronized(this){
 this.withdraw(amt);
 a.deposit(amt);
 }
 }
 }
 }

}
Depth-First Search

• Input: a node \(s \)

• Behavior: Start with node \(s \), visit one neighbor of \(s \), then all nodes reachable from that neighbor of \(s \), then another neighbor of \(s \),...

• Output:
 • Does the graph have a cycle?
 • A **topological sort** of the graph.
DFS (non-recursive)

```java
void dfs(graph, s){
    found = new Stack();
    found.pop(s);
    mark s as “visited”;
    While (!found.isEmpty(){
        current = found.pop();
        for (v : neighbors(current)){
            if (! v marked “visited”){
                mark v as “visited”;  
                found.push(v);
            }
        }
    }
}
Running time: Θ(|V| + |E|)
```
DFS Recursively (more common)

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;  
}
```
Cycle Detection

boolean hasCycle(graph, curr) {
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)) {
 if (v marked “visited” && ! v marked “done”) {
 cycleFound = true;
 }
 if (! v marked “visited” && ! cycleFound) {
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

Idea: Look for a back edge!
Topological Sort

- A Topological Sort of a directed acyclic graph $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation.
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    } 
    mark curr as “done”; 
}
```

Idea: List in reverse order by “done” time
DFS: Topological sort

List topSort(graph) {
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices) {
 if (!v.visited) {
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished) {
 curr.visited = true;
 for (Node v : curr.neighbors) {
 if (!v.visited) {
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

Idea: List in reverse order by “done” time
Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!
Definition: Tree

A connected graph with no cycles

Pick some arbitrary root node and rearrange tree
Definition: Spanning Tree

A Tree \(T = (V_T, E_T) \) which connects ("spans") all the nodes in a graph \(G = (V, E) \).

Any set of \(V-1 \) edges in the graph that doesn’t have any cycles is guaranteed to be a spanning tree!

Any set of \(V-1 \) edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

How many edges does \(T \) have?

\(V - 1 \)

Pick some arbitrary root node and rearrange tree.
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$\text{Cost}(T) = \sum_{e \in E_T} w(e)$$
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C).

A set of edges R respects a cut if no edges cross the cut, e.g. $R = \{(A, B), (E, G), (F, G)\}$.
Cut Theorem

If a set of edges \(A \) is a subset of a minimum spanning tree \(T \), let \((S, V - S) \) be any cut which \(A \) respects. Let \(e \) be the least-weight edge which crosses \((S, V - S) \). \(A \cup \{e\} \) is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges \(A \) is a subset of a minimum spanning tree \(T \), let \((S, V - S)\) be any cut which \(A \) respects. Let \(e \) be the least-weight edge which crosses \((S, V - S)\). \(A \cup \{e\} \) is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges \(A \) is a subset of a minimum spanning tree \(T \), let \((S, V - S)\) be any cut which \(A \) respects. Let \(e \) be the least-weight edge which crosses \((S, V - S)\). \(A \cup \{e\} \) is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal’s has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal’s selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:
• nodes reachable from G using edges in A
• All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)

$O(E \log V)$
General MST Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
Pick a cut $(S, V - S)$ which A respects (typically implicitly)
Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
Pick a cut $(S, V - S)$ which A respects
Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A
e is the min-weight edge that grows the tree
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

- Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap

$O(E \log V)$
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

int dijkstra(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor.distance){
 neighbor.distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty){
        current = PQ.extractmin();
        if (current.known){ continue;}
        current.known = true;
        for (neighbor : current.neighbors){
            if (!neighbor.known){
                new_dist = current.distance + weight(current,neighbor);
                if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
                else if (new_dist < neighbor.distance){
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return end.distance;
}
```
Prim’s Algorithm

```java
int dijkstras(graph, start, end) {
    PQ = new minheap;
    PQ.insert(0, start);  // priority=0, value=start
    start.distance = 0;
    while (!PQ.isEmpty) {
        current = PQ.extractmin();
        if (current.known) { continue; }
        current.known = true;
        for (neighbor : current.neighbors) {
            if (!neighbor.known) {
                new_dist = weight(current, neighbor);
                if (neighbor.dist != ∞) { PQ.insert(new_dist, neighbor); }
                else if (new_dist < neighbor.distance) {
                    neighbor.distance = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return end.distance;
}
```