CSE 332 Winter 2024
Lecture 18: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332
Some Graph Terms

- **Adjacent/Neighbors**
 - Nodes are adjacent/neighbors if they share an edge

- **Degree**
 - Number of “neighbors” of a vertex

- **Indegree**
 - Number of incoming neighbors

- **Outdegree**
 - Number of outgoing neighbors
Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
 • Add Edge
 • Remove Edge
 • Check if Edge Exists
 • Get Neighbors (incoming)
 • Get Neighbors (outgoing)
Adjacency List

Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(\text{deg}(v))$

Check if Edge Exists: $\Theta(\text{deg}(v))$

Get Neighbors (incoming): $\Theta(n + m)$

Get Neighbors (outgoing): $\Theta(\text{deg}(v))$

$|V| = n$

$|E| = m$
Adjacency List (Weighted)

![Graph Diagram]

Time/Space Tradeoffs

- Space to represent: $\Theta(n + m)$
- Add Edge: $\Theta(1)$
- Remove Edge: $\Theta(\text{deg}(v))$
- Check if Edge Exists: $\Theta(\text{deg}(v))$
- Get Neighbors (incoming): $\Theta(n + m)$
- Get Neighbors (outgoing): $\Theta(\text{deg}(v))$

\[
|V| = n \\
|E| = m
\]
Adjacency Matrix

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Time/Space Tradeoffs

- **Space to represent**: $\Theta(\cdot)$
- **Add Edge**: $\Theta(\cdot)$
- **Remove Edge**: $\Theta(\cdot)$
- **Check if Edge Exists**: $\Theta(\cdot)$
- **Get Neighbors (incoming)**: $\Theta(\cdot)$
- **Get Neighbors (outgoing)**: $\Theta(\cdot)$

$|V| = n$

$|E| = m$
Adjacency Matrix (weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n^2)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(1)$
Get Neighbors (incoming): $\Theta(n)$
Get Neighbors (outgoing): $\Theta(n)$

$$|V| = n \quad |E| = m$$
Aside

• Almost always, adjacency lists are the better choice
• Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren’t that bad
Definition: Path

A sequence of nodes \((v_1, v_2, ..., v_k)\)
s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: Weakly Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges.

Weakly Connected

Weakly Connected
Definition: Complete Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2.
Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is $\Theta(|V|^2)$:
 • Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 • Directed and simple: $|V|(|V| - 1)$
 • Direct and non-simple (but no duplicates): $|V|^2$

• If the graph is connected, the minimum number of edges is $|V| - 1$

• If $|E| \in \Theta(|V|^2)$ we say the graph is dense

• If $|E| \in \Theta(|V|)$ we say the graph is sparse

• Because $|E|$ is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for $|E|$ in running times, but leave it as a separate variable
Definition: Tree

A Graph $G = (V, E)$ is a tree if it is undirected, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the “root”
Breadth-First Search

• Input: a node \(s \)
• Behavior: Start with node \(s \), visit all neighbors of \(s \), then all neighbors of neighbors of \(s \), ...
• Output:
 • How long is the shortest path?
 • Is the graph connected?
void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

Running time: $\Theta(|V| + |E|)$
int shortestPath(graph, s, t) {
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()) {
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)) {
 if (!v marked “visited”) {
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}
Depth-First Search
Depth-First Search

• Input: a node \(s \)

• Behavior: Start with node \(s \), visit one neighbor of \(s \), then all nodes reachable from that neighbor of \(s \), then another neighbor of \(s \),...
 • Before moving on to the second neighbor of \(s \), visit everything reachable from the first neighbor of \(s \)

• Output:
 • Does the graph have a cycle?
 • A topological sort of the graph.
DFS (non-recursive)

```java
void dfs(graph, s) {
    found = new Stack();
    found.pop(s);
    mark s as “visited”;
    While (!found.isEmpty()) {
        current = found.pop();
        for (v : neighbors(current)) {
            if (!v marked “visited”) {
                mark v as “visited”;
                found.push(v);
            }
        }
    }
}
```

Running time: $\Theta(|V| + |E|)$
DFS Recursively (more common)

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}
Using DFS

- Consider the “visited times” and “done times”
- Edges can be categorized:
 - **Tree Edge**
 - \((a, b)\) was followed when pushing
 - \((a, b)\) when \(b\) was unvisited when we were at \(a\)
 - **Back Edge**
 - \((a, b)\) goes to an “ancestor”
 - \(a\) and \(b\) visited but not done when we saw \((a, b)\)
 - \(t_{\text{visited}}(b) < t_{\text{visited}}(a) < t_{\text{done}}(a) < t_{\text{done}}(b)\)
 - **Forward Edge**
 - \((a, b)\) goes to a “descendent”
 - \(b\) was visited and done between when \(a\) was visited and done
 - \(t_{\text{visited}}(a) < t_{\text{visited}}(b) < t_{\text{done}}(b) < t_{\text{done}}(a)\)
 - **Cross Edge**
 - \((a, b)\) goes to a node that doesn’t connect to \(a\)
 - \(b\) was seen and done before \(a\) was ever visited
 - \(t_{\text{done}}(b) < t_{\text{visited}}(a)\)
Back Edges

• Behavior of DFS:
 • “Visit everything reachable from the current node before going back”

• Back Edge:
 • The current node’s neighbor is an “in progress” node
 • Since that other node is “in progress”, the current node is reachable from it
 • The back edge is a path to that other node
 • Cycle!
boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited”){
 if (!v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 }
 mark curr as “done”; return cycleFound;
}
Find the quickest way to get from UVA to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node s, end node t

• Behavior: Start with node s, repeatedly go to the incomplete node “nearest” to s, stop when

• Output:
 • Distance from start to end
 • Distance from start to every node
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm
Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,...]; // one index per node
 done = [False, False, False,...]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){ // new_dist = distances[current]+weight(current,neighbor);
 if (new_dist < distances[neighbor]{
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}
Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
 • How many times is each node added to the priority queue?
 • How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
 • \(\Theta(|E| \log |V|) \)
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have found its shortest path
• Induction over number of completed nodes
• Base Case:
• Inductive Step:
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, its distance is that of the shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
 • It is indeed 0 away from itself

• Inductive Step:
 • If we have correctly found shortest paths for the first k nodes, then when we remove node $k + 1$ we have found its shortest path
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue. What do we know bout a?
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • Thus no path that includes b can be a shorter path to a
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far
• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • No path from b to a can have negative weight
 • Thus no path that includes b can be a shorter path to a
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!