CSE 332 Autumn 2023
Lecture 18: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332
Some Graph Terms

- **Adjacent/Neighbors**
 - Nodes are adjacent/neighbors if they share an edge

- **Degree**
 - Number of “neighbors” of a vertex

- **Indegree**
 - Number of incoming neighbors

- **Outdegree**
 - Number of outgoing neighbors
Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
 • Add Edge
 • Remove Edge
 • Check if Edge Exists
 • Get Neighbors (incoming)
 • Get Neighbors (outgoing)
Adjacency List

Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(\deg(v))$
Check if Edge Exists: $\Theta(\deg(v))$
Get Neighbors (incoming): $\Theta(n + m)$
Get Neighbors (outgoing): $\Theta(\deg(v))$

$|V| = n$
$|E| = m$
Adjacency List (Weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(\text{deg}(v))$
Check if Edge Exists: $\Theta(\text{deg}(v))$
Get Neighbors (incoming): $\Theta(n + m)$
Get Neighbors (outgoing): $\Theta(\text{deg}(v))$

$|V| = n$
$|E| = m$
Adjacency Matrix

Time/Space Tradeoffs
Space to represent: $\Theta(\cdot)$
Add Edge: $\Theta(\cdot)$
Remove Edge: $\Theta(\cdot)$
Check if Edge Exists: $\Theta(\cdot)$
Get Neighbors (incoming): $\Theta(\cdot)$
Get Neighbors (outgoing): $\Theta(\cdot)$

$|V| = n$
$|E| = m$
Adjacency Matrix (weighted)

Time/Space Tradeoffs
- Space to represent: $\Theta(n^2)$
- Add Edge: $\Theta(1)$
- Remove Edge: $\Theta(1)$
- Check if Edge Exists: $\Theta(1)$
- Get Neighbors (incoming): $\Theta(n)$
- Get Neighbors (outgoing): $\Theta(n)$

$|V| = n$

$|E| = m$
Aside

• Almost always, adjacency lists are the better choice
• Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren’t that bad
Definition: Path

A sequence of nodes \((v_1, v_2, ..., v_k)\) s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Connected

Not (strongly) Connected
Definition: Weakly Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges.
Definition: Complete Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2
Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: $|V|(|V| - 1)$
 - Direct and non-simple (but no duplicates): $|V|^2$

- If the graph is connected, the minimum number of edges is $|V| - 1$

- If $|E| \in \Theta(|V|^2)$ we say the graph is dense

- If $|E| \in \Theta(|V|)$ we say the graph is sparse

- Because $|E|$ is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for $|E|$ in running times, but leave it as a separate variable
Definition: Tree

A Graph $G = (V, E)$ is a tree if it is undirected, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the “root”

A Tree

A Rooted Tree
Breadth-First Search

• Input: a node s

• Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...

• Output:
 • How long is the shortest path?
 • Is the graph connected?
void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

Running time: $\Theta(|V| + |E|)$
int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}
Depth-First Search
Depth-First Search

• Input: a node \(s \)

• Behavior: Start with node \(s \), visit one neighbor of \(s \), then all nodes reachable from that neighbor of \(s \), then another neighbor of \(s \),...
 • Before moving on to the second neighbor of \(s \), visit everything reachable from the first neighbor of \(s \)

• Output:
 • Does the graph have a cycle?
 • A **topological sort** of the graph.
void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}
DFS Recursively (more common)

```java
void dfs(graph, curr){
    mark curr as “visited”;  
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;  
}
```
Using DFS

• Consider the “visited times” and “done times”

• Edges can be categorized:
 • Tree Edge
 • \((a, b)\) was followed when pushing
 • \((a, b)\) when \(b\) was unvisited when we were at \(a\)
 • Back Edge
 • \((a, b)\) goes to an “ancestor”
 • \(a\) and \(b\) visited but not done when we saw \((a, b)\)
 • \(t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)\)
 • Forward Edge
 • \((a, b)\) goes to a “descendent”
 • \(b\) was visited and done between when \(a\) was visited and done
 • \(t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)\)
 • Cross Edge
 • \((a, b)\) goes to a node that doesn’t connect to \(a\)
 • \(b\) was seen and done before \(a\) was ever visited
 • \(t_{done}(b) < t_{visited}(a)\)
BackEdges

• Behavior of DFS:
 • “Visit everything reachable from the current node before going back”

• Back Edge:
 • The current node’s neighbor is an “in progress” node
 • Since that other node is “in progress”, the current node is reachable from it
 • The back edge is a path to that other node
 • Cycle!
Cycle Detection

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound = true;
 }
 if (! v marked “visited” && ! cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}
Single-Source Shortest Path

Find the quickest way to get from UVA to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node s, end node t
• Behavior: Start with node s, repeatedly go to the incomplete node “nearest” to s, stop when
• Output:
 • Distance from start to end
 • Distance from start to every node
Dijkstra’s Algorithm

Start: 0

End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>\infty</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>\infty</td>
</tr>
<tr>
<td>6</td>
<td>\infty</td>
</tr>
<tr>
<td>7</td>
<td>\infty</td>
</tr>
<tr>
<td>8</td>
<td>\infty</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path
Dijkstra’s Algorithm

Start: 0

End: 8

Node	Done?
0 | T
1 | T
2 | T
3 | F
4 | F
5 | F
6 | F
7 | F
8 | F

Node	Distance
0 | 0
1 | 10
2 | 12
3 | 15
4 | 18
5 | 13
6 | ∞
7 | ∞
8 | ∞

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path
Dijkstra’s Algorithm
Start: 0
End: 8

Node	Done?
0 | T
1 | T
2 | T
3 | F
4 | F
5 | T
6 | F
7 | F
8 | F

Node	Distance
0 | 0
1 | 10
2 | 12
3 | 14
4 | 18
5 | 13
6 | ∞
7 | 20
8 | ∞

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){ //if it is not visited
                new_dist = distances[current]+weight(current,neighbor);
                if new_dist < distances[neighbor]{
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return distances[end]
}
```
Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
 • How many times is each node added to the priority queue?
 • How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
 • $\Theta(|E| \log |V|)$
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, its distance is that of the shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
 • It is indeed 0 away from itself

• Inductive Step:
 • If we have correctly found shortest paths for the first k nodes, then when we remove node $k + 1$ we have found its shortest path
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue. What do we know bout a?
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to a could be shorter
 - Consider any other incomplete node b that is 1 edge away from a complete node
 - a is the closest node that is one away from a complete node
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far
• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • No path from b to a can have negative weight
 • Thus no path that includes b can be a shorter path to a
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!