CSE 332 Winter 2024
Lecture 16: Radix Sort, Graphs

Nathan Brunelle

http://www.cs.uw.edu/332
“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 • Examples:
 • The list contains only positive integers less than k
 • The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the list’s length to account for this assumption
 • Examples:
 • Running time might be $\Theta(k \cdot n)$ where k is the range/count of values
BucketSort

- Assumes the array contains integers between 0 and $k - 1$ (or some other small range)
- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the “bucket” at that index (e.g. linked list)
 - Get sorted array by “appending” all the buckets
BucketSort Running Time

• Create array of k buckets
 • Either $\Theta(k)$ or $\Theta(1)$ depending on some things...

• Insert all n things into buckets
 • $\Theta(n)$

• Empty buckets into an array
 • $\Theta(n + k)$

• Overall:
 • $\Theta(n + k)$

• When is this better than mergesort?
Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!
RadixSort

- Radix: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

| 103 | 801 | 401 | 323 | 255 | 823 | 999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Place each element into a “bucket” according to its 1’s place
RadixSort

- Radix: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

<table>
<thead>
<tr>
<th>800</th>
<th>801</th>
<th>101</th>
<th>901</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
</tr>
<tr>
<td>255</td>
<td>555</td>
<td>245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Place each element into a “bucket” according to its 10’s place.
RadixSort

- Radix: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a “bucket” according to its 100’s place
RadixSort

- Radix: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
RadixSort Running Time

• Suppose largest value is m
• Choose a radix (base of representation) b
• BucketSort all n things using b buckets
 • $\Theta(n + k)$
• Repeat once per each digit
 • $\log_b m$ iterations
• Overall:
 • $\Theta(n \log_b m + b \log_b m)$
• In practice, you can select the value of b to optimize running time
• When is this better than mergesort?
ARPANET
Undirected Graphs

Definition: $G = (V, E)$

Vertices/Nodes

$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Edges

$E = \{(1,2), (2,3), (1,3), \ldots\}$
Directed Graphs

Definition: $G = (V, E)$

Vertices/Nodes

$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Edges

$E = \{(1, 2), (2, 3), (1, 3), \ldots\}$
Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs.
Weighted Graphs

Definition: \(G = (V, E) \)

\[w(e) = \text{weight of edge } e \]

\(V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

\(E = \{(1, 2), (2, 3), (1, 3), \ldots\} \)
Graph Applications

• For each application below, consider:
 • What are the nodes, what are the edges?
 • Is the graph directed?
 • Is the graph simple?
 • Is the graph weighted?

• Facebook friends
• Twitter followers
• Java inheritance
• Airline Routes
Some Graph Terms

- **Adjacent/Neighbors**
 - Nodes are adjacent/neighbors if they share an edge

- **Degree**
 - Number of “neighbors” of a vertex

- **Indegree**
 - Number of incoming neighbors

- **Outdegree**
 - Number of outgoing neighbors
Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)
Adjacency List

![Adjacency List Diagram]

Time/Space Tradeoffs
- Space to represent: $\Theta(n + m)$
- Add Edge: $\Theta(1)$
- Remove Edge: $\Theta(1)$
- Check if Edge Exists: $\Theta(n)$
- Get Neighbors (incoming): $\Theta(n + m)$
- Get Neighbors (outgoing): $\Theta(\text{deg}(v))$

$|V| = n$
$|E| = m$
Adjacency List (Weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(n)$
Get Neighbors (incoming): $\Theta(?)$
Get Neighbors (outgoing): $\Theta(?)$

$|V| = n$
$|E| = m$
Adjacency Matrix

Time/Space Tradeoffs
Space to represent: $\Theta(\cdot)$
Add Edge: $\Theta(\cdot)$
Remove Edge: $\Theta(\cdot)$
Check if Edge Exists: $\Theta(\cdot)$
Get Neighbors (incoming): $\Theta(\cdot)$
Get Neighbors (outgoing): $\Theta(\cdot)$

$|V| = n$
$|E| = m$
Adjacency Matrix (weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n^2)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(1)$
Get Neighbors (incoming): $\Theta(n)$
Get Neighbors (outgoing): $\Theta(n)$

$|V| = n$
$|E| = m$
Aside

• Almost always, adjacency lists are the better choice
• Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren’t that bad
Definition: Path

A sequence of nodes \((v_1, v_2, \ldots, v_k)\)

s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: (Strongly) Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: Weakly Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges.

Weakly Connected

Weakly Connected
Definition: Complete Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2
Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: $|V|(|V| - 1)$
 - Directed and non-simple (but no duplicates): $|V|^2$

• If the graph is connected, the minimum number of edges is $|V| - 1$

• If $|E| \in \Theta(|V|^2)$ we say the graph is dense

• If $|E| \in \Theta(|V|)$ we say the graph is sparse

• Because $|E|$ is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for $|E|$ in running times, but leave it as a separate variable
Definition: Tree

A Graph $G = (V, E)$ is a tree if it is undirected, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the “root”
Breadth-First Search

• Input: a node \(s \)

• Behavior: Start with node \(s \), visit all neighbors of \(s \), then all neighbors of neighbors of \(s \), ...

• Output:
 • How long is the shortest path?
 • Is the graph connected?
void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

Running time: $\Theta(|V| + |E|)$
Shortest Path (unweighted)

```java
int shortestPath(graph, s, t){
    found = new Queue();
    layer = 0;
    found.enqueue(s);
    mark s as “visited”;
    While (!found.isEmpty()){
        current = found.dequeue();
        layer = depth of current;
        for (v : neighbors(current)){
            if (!v marked “visited”){
                mark v as “visited”;
                depth of v = layer + 1;
                found.enqueue(v);
            }
        }
    }
    return depth of t;
}
```

Idea: when it’s seen, remember its “layer” depth!
Depth-First Search
Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, ...
- Output:
 - Does the graph have a cycle?
 - A **topological sort** of the graph.
DFS (non-recursive)

```java
void dfs(graph, s){
    found = new Stack();
    found.pop(s);
    mark s as “visited”;
    While (!found.isEmpty()){
        current = found.pop();
        for (v : neighbors(current)){
            if (!v marked “visited”){
                mark v as “visited”;
                found.push(v);
            }
        }
    }
}
```

Running time: $\Theta(|V| + |E|)$
DFS Recursively (more common)

```java
void dfs(graph, curr){
    mark curr as "visited";
    for (v : neighbors(current)){
        if (! v marked "visited"){
            dfs(graph, v);
        }
    }
    mark curr as "done";
}
```