Dictionary Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Hash Table (Worst case)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Hash Table (Average)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Hash Tables

• Idea:
 • Have a small array to store information
 • Use a **hash function** to convert the key into an index
 • Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
 • Store key at the index given by the hash function
 • Do something if two keys map to the same place (should be very rare)
 • Collision resolution

Key Object \(h(k) \) Index between 0 and size-1 Insert / find / delete
Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
 • Calculating the hash should be negligible

• Should randomly scatter objects
 • Objects that are similar to each other should be likely to end up far away

• Should use the entire table
 • There should not be any indices in the table that nothing can hash to
 • Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
 • Use only fields you would check for a .equals method be included in calculating the hash
 • More fields typically leads to fewer collisions, but less efficient calculation
A Bad Hash (and phone number trivia)

- \(h(phone) \) = the first digit of the phone number
 - No US phone numbers start with 1 or 0
 - If we’re sampling from this class, 2 is by far the most likely
Compare These Hash Functions (for strings)

- Let $s = s_0s_1s_2 ... s_{m-1}$ be a string of length m
 - Let $a(s_i)$ be the ascii encoding of the character s_i
- $h_1(s) = a(s_0) / 10$
- $h_2(s) = (\sum_{i=0}^{m-1} a(s_i))$
- $h_3(s) = (\sum_{i=0}^{m-1} a(s_i) \cdot 37^i)$
Collision Resolution

• A Collision occurs when we want to insert something into an already-occupied position in the hash table.

• 2 main strategies:
 • **Separate Chaining**
 • Use a secondary data structure to contain the items
 • E.g. each index in the hash table is itself a linked list
 • **Open Addressing**
 • Use a different spot in the table instead
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
Separate Chaining Insert

• To insert \((k, v)\):
 • Compute the index using \(i = h(k) \% \text{size}\)
 • Add the key-value pair to the data structure at \(\text{table}[i]\)
Separate Chaining Find

- To find k:
 - Compute the index using $i = \frac{h(k) \mod \text{size}}{}$
 - Call find with the key on the data structure at \text{table}[i]
Separate Chaining Delete

• To delete k:
 • Compute the index using $i = h(k) \% \text{size}$
 • Call delete with the key on the data structure at $\text{table}[i]$
Formal Running Time Analysis

• The load factor of a hash table represents the average number of items per “bucket”
 \[\lambda = \frac{n}{\text{size}} \]

• Assume we have a has table that uses a linked-list for separate chaining
 • What is the expected number of comparisons needed in an unsuccessful find?
 • What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time \(\Theta(1) \)?
 \[\text{size} \sim n \]
Load Factor?

\[\ell = 0.3 \]

30%}

\[c + 0.8 + \frac{1}{10} \cdot 1 + \frac{1}{10} = 2 \]
Load Factor?

\[k, v \]

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \]
Load Factor?

\[k, v \]

\[k, v \]
Collision Resolution: Linear Probing

- When there’s a collision, use the next open space in the table.
Linear Probing: Insert Procedure

To insert \(k, v \):

- Calculate \(i = h(k) \mod \text{size} \)
- If \(\text{table}[i] \) is occupied then try \((i + 1) \mod \text{size} \)
- If that is occupied try \((i + 2) \mod \text{size} \)
- If that is occupied try \((i + 3) \mod \text{size} \)
- ...
Linear Probing: Find

• Let’s do this together!
Linear Probing: Find

• To find key k
 • Calculate $i = h(k) \% size$
 • If $table[i]$ is occupied and does not contain k then look at $(i + 1) \% size$
 • If that is occupied and does not contain k then look at $(i + 2) \% size$
 • If that is occupied and does not contain k then look at $(i + 3) \% size$
 • Repeat until you either find k or else you reach an empty cell in the table
Linear Probing: Delete

- Let’s do this together!
Linear Probing: Delete

• Option 1: Find the last thing with a matching hash, move that into the spot you deleted from

• Option 2: Called “tombstone” deletion. Leave a special object that indicates an object was deleted from there
 • The tombstone does not act as an open space when finding (so keep looking after its reached)
 • When inserting you can replace a tombstone with a new item
Downsides of Linear Probing

• What happens when λ approaches 1?
• What happens when λ exceeds 1?
Quadratic Probing: Insert Procedure

- To insert k, v
 - Calculate $i = h(k) \% \text{size}$
 - If $table[i]$ is occupied then try $(i + 1^2)\% \text{size}$
 - If that is occupied try $(i + 2^2)\% \text{size}$
 - If that is occupied try $(i + 3^2)\% \text{size}$
 - If that is occupied try $(i + 4^2)\% \text{size}$
 - ...
Quadratic Probing: Example

- Insert:
 - 76
 - 40
 - 48
 - 5
 - 55
 - 47
Using Quadratic Probing

• If you probe $tablesizex$ times, you start repeating the same indices
• If $tablesizex$ is prime and $\lambda < \frac{1}{2}$ then you’re guaranteed to find an open spot in at most $tablesizex/2$ probes

• Helps with the clustering problem of linear probing, but does not help if many things hash to the same value
Double Hashing: Insert Procedure

• Given \(h \) and \(g \) are both good hash functions
• To insert \(k, v \)
 • Calculate \(i = h(k) \% \text{size} \)
 • If \(table[i] \) is occupied then try \((i + g(k)) \% \text{size} \)
 • If that is occupied try \((i + 2 \cdot g(k)) \% \text{size} \)
 • If that is occupied try \((i + 3 \cdot g(k)) \% \text{size} \)
 • If that is occupied try \((i + 4 \cdot g(k)) \% \text{size} \)
 • ...

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]
Rehashing

• If your load factor λ gets too large, copy everything over to a larger hash table
 • To do this: make a new array with a new hash function
 • Re-insert all items into the new hash table with the new hash function
 • New hash table should be “roughly” double the size (but probably still want it to be prime)