CSE 332 Autumn 2023
Lecture 12: Hashing

Nathan Brunelle

http://www.cs.uw.edu/332
Find

• Start at the root node
• Binary search internal nodes to identify correct subtree
• Repeat until you reach a leaf node
• Binary search the leaf to get the value
Insertion Summary

• Binary search to find which leaf should contain the new item
• If there’s room, add it to the leaf array (maintaining sorted order)
• If there’s not room, **split**
 • Make a new leaf node, move the larger \(\left\lfloor \frac{L+1}{2} \right\rfloor \) items to it
 • If there’s room in the parent internal node, add new leaf to it (with new key bound value)
 • If there’s not room in the parent internal node, **split** that!
 • Make a new internal node and have it point to the larger \(\left\lfloor \frac{M+1}{2} \right\rfloor \)
 • If there’s room in the parent internal node, add this internal node to it
 • If there’s not room, repeat this process until there is!
Insertion TLDR

• Find where the item goes by repeated binary search
• If there’s room, just add it
• If there’s not room, split things until there is
Running Time of Find

- Maximum number of leaves:
 - $\frac{2n}{L}$
 - $\Theta\left(\frac{n}{L}\right)$

- Maximum height of the tree:
 - $2 \log \frac{2n}{L}$
 - $\Theta\left(\log \frac{n}{L}\right)$

- Find:
 - One binary search per level of the tree
 - $\Theta(\log_2 M)$ per search
 - One binary search in the leaf
 - $\Theta(\log_2 L)$

Overall: $\Theta\left(\log_2 M \cdot \log M \frac{n}{L} + \log_2 L\right)$

Usually simplified to: $\Theta(\log_2 M \cdot \log_M n)$
Running Time of Insert

• Find:
 • $\Theta(\log_2 M \cdot \log_M n)$

• Add item to leaf:
 • $\Theta(L)$

• Split a leaf
 • $\Theta(L)$

• Split one internal node:
 • $\Theta(M)$

Overall: $\Theta(L + M \cdot \log_M n)$

Usually simplified to:
$\Theta(\log_2 M \cdot \log_M n)$
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 50
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5

```
3 5
1 3 4 6
2
```

```
9
7 8 9 10
```

```
17 25
13 14 17 20 25 27 30
```

```
55
38 40 55 90
```
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5
Delete

• Recall: all nodes must be at least half full (except root at startup)

dele 1
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1
Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1
Delete Summary

• Find the item
• Remove the item from the leaf
 • If that causes the leaf to be under-full, adopt from a neighbor
 • If that would cause the neighbor to be under-full, merge them
 • Update the parent
 • If that causes the parent to be under-full, adopt from a neighbor
 • If that causes the neighbor to be under-full, merge
 • Update the parent
 • ...

...
Delete TLDR

• Find and remove from leaf

• Keep doing this until everything is “full enough”:
 • If the node is now too small, adopt from a neighbor
 • If the neighbor is too small then merge
Next topic: Hash Tables

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Hash Table (Worst case)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Hash Table (Average)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Two Different ideas of “Average”

• Expected Time
 • The expected number of operations a randomly-chosen input uses
 • Assumed randomness from somewhere
 • Most simply: from the input
 • Preferably: from the algorithm/data structure itself
 • $f(n) = \text{sum of the running times for each input of size } n \div \text{number of inputs of size } n$

• Amortized Time
 • The long-term average per-execution cost (in the worst case)
 • Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
 • Why? The worst case may be guaranteed to be rare
 • $f(n) = \text{the sum of the running times from a sequence of } n \text{ sequential calls to the function divided by } n$
Amortized Example

• ArrayList Insert:
 • Worst case: $\Theta(n)$
Amortized Example

- ArrayList Insert:
 - First 8 inserts: 1 operation each
 - 9th insert: 9 operations
 - Next 7 inserts: 1 operation each
 - 17th insert: 17 operations
 - Next 15 inserts: 1 operation each
 - ...

Amortized: each operation cost 2 operations

\(\Theta(1) \)
Hash Tables

• Motivation:
 • Why not just have a gigantic array?
Problem?

~ 8 exabytes
Hash Tables

• Idea:
 • Have a small array to store information
 • Use a **hash function** to convert the key into an index
 • Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
 • Store key at the index given by the hash function
 • Do something if two keys map to the same place (should be very rare)
 • Collision resolution

Key Object

\[h(k) \]

Index between 0 and size-1

Insert / find / delete

& value
Example

- Key: Phone Number
- Value: People
- Table size: 10
- \(h(\text{phone}) = \text{number as an integer} \mod 10 \)
- \(h(8675309) = 9 \)
What Influences Running time?

- Rarity of collisions
- Quality of hash
- Size of the array
Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
 • Calculating the hash should be negligible

• Should “randomly” scatter objects
 • Even similar objects should be able to be far away

• Should use the entire table
 • There should not be any indices in the table that nothing can hash to
 • Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
 • Use only fields you would check for a .equals method to be included in calculating the hash
 • More fields typically leads to fewer collisions, but less efficient calculation
A Bad Hash (and phone number trivia)

- $h(phone) = \text{the first digit of the phone number}$
- No US phone numbers start with 1 or 0
 - If we’re sampling from this class, 2 is by far the most likely
Compare These Hash Functions (for strings)

- Let $s = s_0s_1s_2 \ldots s_{m-1}$ be a string of length m
 - Let $a(s_i)$ be the ascii encoding of the character s_i
- $h_1(s) = a(s_0)$
- $h_2(s) = (\sum_{i=0}^{m-1} a(s_i))$
- $h_3(s) = (\sum_{i=0}^{m-1} a(s_i) \cdot 37^i)$
Collision Resolution

• A Collision occurs when we want to insert something into an already-occupied position in the hash table

• 2 main strategies:
 • Separate Chaining
 • Use a secondary data structure to contain the items
 • E.g. each index in the hash table is itself a linked list
 • Open Addressing
 • Use a different spot in the table instead
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
Separate Chaining Insert

• To insert k, v:
 • Compute the index using $i = h(k) \% \text{size}$
 • Add the key-value pair to the data structure at $\text{table}[i]$
Separate Chaining Find

• To find k:
 • Compute the index using $i = h(k) \% \text{size}$
 • Call find with the key on the data structure at $\text{table}[i]$
Separate Chaining Delete

• To delete k:
 • Compute the index using $i = h(k) \% \text{size}$
 • Call delete with the key on the data structure at $table[i]$
Formal Running Time Analysis

• The **load factor** of a hash table represents the average number of items per “bucket”
 - \[\lambda = \frac{n}{\text{size}} \]
• Assume we have a hash table that uses a linked-list for separate chaining
 - What is the expected number of comparisons needed in an unsuccessful find?
 - What is the expected number of comparisons needed in a successful find?
• How can we make the expected running time \(\Theta(1) \)?
Load Factor?

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

k, v

k, v

k, v
Load Factor?
Load Factor?
Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table
Linear Probing: Insert Procedure

• To insert k, v
 • Calculate $i = h(k) \% \text{size}$
 • If $table[i]$ is occupied then try $(i + 1)\% \text{size}$
 • If that is occupied try $(i + 2)\% \text{size}$
 • If that is occupied try $(i + 3)\% \text{size}$
 • ...

0 1 2 3 4 5 6 7 8 9
Linear Probing: Find

- Let’s do this together!
Linear Probing: Find

• To find key k
 • Calculate $i = h(k) \% \text{size}$
 • If $\text{table}[i]$ is occupied and does not contain k then look at $(i + 1) \% \text{size}$
 • If that is occupied and does not contain k then look at $(i + 2) \% \text{size}$
 • If that is occupied and does not contain k then look at $(i + 3) \% \text{size}$
 • Repeat until you either find k or else you reach an empty cell in the table
Linear Probing: Delete

• Let’s do this together!
Linear Probing: Delete

• Let’s do this together!