Useful Math Identities

Summations

1. $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$ for $|x|<1$
2. $\sum_{i=1}^{n} c f(i)=c \sum_{i=1}^{n} f(i)$
3. $\sum_{i=0}^{n-1} 1=\sum_{i=1}^{n} 1=n$
4. $\sum_{i=0}^{n} i=0+\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
5. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}$
6. $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n^{2}}{4}$
7. $\sum_{i=0}^{n-1} x^{i}=\frac{1-x^{n}}{1-x}$
8. $\sum_{i=0}^{n-1} \frac{1}{2^{i}}=2-\frac{1}{2^{n-1}}$

In the worst case, if there is an uncommon summation, we recommend using Wolfram Alpha to simplify it.

Logs

A few useful formulas, more can be found on the bottom of these slides

1. $x^{\log _{x} n}=n$
2. $a^{\log _{b} c}=c^{\log _{b} a}$
3. $\log _{b} a=\frac{\log _{d} a}{\log _{d} b}$
