# CSE 332 Summer 2024 Lecture 9: hashing

Nathan Brunelle

http://www.cs.uw.edu/332

# Dictionary (Map) ADT

#### • Contents:

- Sets of key+value pairs
- Keys must be comparable
- Operations:
  - insert(key, value)
    - Adds the (key,value) pair into the dictionary
    - If the key already has a value, overwrite the old value
      - Consequence: Keys cannot be repeated
  - find(key)
    - Returns the value associated with the given key
  - delete(key)
    - Remove the key (and its associated value)

### Dictionary Data Structures

| Data Structure       | Time to insert   | Time to find     | Time to delete   |
|----------------------|------------------|------------------|------------------|
| Unsorted Array       | $\Theta(1)$      | $\Theta(n)$      | $\Theta(n)$      |
| Unsorted Linked List | $\Theta(1)$      | $\Theta(n)$      | $\Theta(n)$      |
| Sorted Array         | $\Theta(n)$      | $\Theta(\log n)$ | $\Theta(n)$      |
| Sorted Linked List   | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      |
| Неар                 | $\Theta(\log n)$ | $\Theta(n)$      | $\Theta(n)$      |
| Binary Search Tree   | Θ(height)        | Θ(height)        | Θ(height)        |
| AVL Tree             | $\Theta(\log n)$ | $\Theta(\log n)$ | $\Theta(\log n)$ |

# BSTs and AVL Trees

- Binary Search Tree:
  - A binary tree where for each node, all keys in its left subtree are smaller and all keys in its right subtree are larger
  - Find:
    - If it matches, return the value.
    - If the search key is less than the current node, look left. If it's greater, look right.
    - If we reach an empty spot, find was unsuccessful
  - Insert:
    - Do a find, if it was successful then update the value
    - If it was unsuccessful, add a new node to the empty spot we found.
  - Delete:
    - If the deleted node is a leaf, just remove it
    - If the deleted node had one child, replace it with that one child
    - If the deleted node had 2 children, replace it with the largest key to the left
- AVL Tree:
  - A binary search tree where for each node, the height of its left subtree and the height of its right subtree are off by at most 1.
  - Find:
    - Same as BST
  - Insert:
    - Do a BST insert, then rotate if tree is unbalanced (apply one LL, RR, LR, RL case)
  - Delete:
    - Do a BST delete, then rotate if the tree is unbalanced (apply LL, RR, LR, RL cases as needed from leaf to root)

#### Other Tree-based Dictionaries

- Red-Black Trees
  - Similar to AVL Trees in that we add shape rules to BSTs
  - More "relaxed" shape than an AVL Tree
    - Trees can be taller (though not asymptotically so)
    - Needs to move nodes less frequently
  - This is what Java's TreeMap uses!
- Tries
  - Similar to a Huffman Tree
  - Requires keys to be sequences (e.g. Strings)
  - Combines shared prefixes among keys to save space
  - Often used for text-based searches
    - Web search
    - Genomes

### Next topic: Hash Tables

|               | Data Structure          | Time to insert   | Time to find     | Time to delete   |
|---------------|-------------------------|------------------|------------------|------------------|
|               | Unsorted Array          | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      |
| $\sum$        | Unsorted Linked List    | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      |
| Ţ             | Sorted Array            | $\Theta(n)$      | $\Theta(\log n)$ | $\Theta(n)$      |
|               | Sorted Linked List      | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      |
|               | Binary Search Tree      | Θ(height)        | Θ(height)        | Θ(height)        |
|               | AVL Tree                | $\Theta(\log n)$ | $\Theta(\log n)$ | $\Theta(\log n)$ |
| ~             | Hash Table (Worst case) | $\Theta(n)$      | $\Theta(n)$      | $\Theta(n)$      |
| $\rightarrow$ | Hash Table (Average)    | Θ(1)             | Θ(1)             | Θ(1)             |

# Dictionary (Map) ADT

#### • Contents:

• Sets of key+value pairs

Keys must be comparable

- Operations:
  - insert(key, value)
    - Adds the (key,value) pair into the dictionary
    - If the key already has a value, overwrite the old value
      - Consequence: Keys cannot be repeated
  - find(key)
    - Returns the value associated with the given key
  - delete(key)
    - Remove the key (and its associated value)

#### The Best Data Structure!

- Think of every key as a number
- Give each key its own index in an array

```
insert(key, value){
    arr[key]=value;
}
find(key){
    return arr[key];
}
delete(key){
    arr[key] = null;
}
```

#### Problem?

exaby Les





#### Hash Tables

- Idea:
  - Have a small array to store information
  - Use a hash function to convert the key into an index
    - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
  - Store key at the index given by the hash function
  - Do something if two keys map to the same place (should be very rare)
    - Collision resolution





• h(8675309) = 9

# What Influences Running time?

- How long hashing itself takes
- Likelihood of collisions
  - Size of the array vs number of values in the array
  - "quality" of our hash function
- What we do when we have a collision

# Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
  - Time to calculate the hash should be negligible
- Should "randomly" scatter objects
  - Even similar objects should hash to arbitrarily different values
- Should use the entire table
  - There should not be any indices in the table that nothing can hash to
  - Picking a table size that is prime helps with this
- Should use things needed to "identify" the object
  - Use only fields you would check for a .equals method be included in calculating the hash
    - {fields used for hashing}  $\subseteq$  {fields used for . equals}
  - More fields typically leads to fewer collisions, but less efficient calculation

# A Bad Hash (and phone number trivia)

- h(phone) = the first digit of the phone number
  - Assume 10-digit format
  - No US phone numbers start with 1 or 0
  - If we're sampling from this class, 2 is by far the most likely



# Compare These Hash Functions (for strings)

- Let  $s = s_0 s_1 s_2 \dots s_{m-1}$  be a string of length m
  - Let  $a(s_i)$  be the ascii encoding of the character  $s_i$
- $h_1(s) = a(s_0)$ 
  - Way more items map to h(e) than to h(q)
- $h_2(s) = (\sum_{i=0}^{m-1} a(s_i))$ 
  - Feels pretty random
  - Relatively efficient
  - Use the whole string
  - dog and god map to the same spot
  - Might be different likelihoods of even vs odd

•  $h_3(s) = \left(\sum_{i=0}^{m-1} a(s_i) \cdot 37^i\right)$ 

- Shares benefits with the last one
- Slower than the last because there's more math
- Uses character's position
- 37 is prime (important?)
  - May be a problem if length is also 37

### **Collision Resolution**

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
  - Separate Chaining
    - Use a secondary data structure to contain the items
      - E.g. each index in the hash table is itself a linked list
  - Open Addressing
    - Use a different spot in the table instead
      - Linear Probing
      - Quadratic Probing
      - Double Hashing



### Separate Chaining Insert

- To insert *k*, *v*:
  - Compute the index using  $i \neq h(k)$  % length
  - Add the key-value pair to the data structure at *table*[*i*]



### Separate Chaining Find

- To find *k*:
  - Compute the index using i = h(k) % length
  - Call find with the key on the data structure at *table*[*i*]



### Separate Chaining Delete

- To delete k:
  - Compute the index using i = h(k) % length
  - Call delete with the key on the data structure at *table*[*i*]



#### Formal Running Time Analysis

- The **load factor** of a hash table represents the average number of items per "bucket"
  - $\lambda = \frac{n}{length}$
- Assume we have a has table that uses a linked-list for separate chaining
  - What is the expected number of comparisons needed in an unsuccessful find?
  - What is the expected number of comparisons needed in a successful find?
- How can we make the expected running time  $\Theta(1)$ ?

#### Load Factor?







#### Collision Resolution: Linear Probing

• When there's a collision, use the next open space in the table



#### Linear Probing: Insert Procedure

• To insert *k*, *v* 

• ...

- Calculate i = h(k) % length
- If table[i] is occupied then try (i + 1)% length
- If that is occupied try (i + 2)% length
- If that is occupied try (i + 3)% length



#### Linear Probing: Find



#### Linear Probing: Find

- To find key k
  - Calculate i = h(k) % length
  - If table[i] is occupied and does not contain k then look at (i + 1) % length
  - If that is occupied and does not contain k then look at (i + 2) % length
  - If that is occupied and does not contain k then look at (i + 3) % length
  - Repeat until you either find k or else you reach an empty cell in the table



- Suppose A, B, C, D, and E all hashed to 3
- Now let's delete B



- Suppose A, B, and E all hashed to 3, and C and D hashed to 5
- Now let's delete B



- Suppose A and E hashed to 3, and B,C, and D hashed to 4
- Now let's delete B



• Let's do this together!



- To delete key k, where h(k) = i
  - Assume it is present
- Beginning at index *i*, probe until we find *k* (call this location index *j*)
- Mark *j* as empty (e.g. null), then continue probing while doing the following until you find another empty index
  - If you come across a key which hashes to a value ≤ j then move that item to index j and update j.



- Option 1: Fill in with items that hashed to before the empty slot
- Option 2: "Tombstone" deletion. Leave a special object that indicates an object was deleted from there
  - The tombstone does not act as an open space when finding (so keep looking after its reached)
  - When inserting you can replace a tombstone with a new item



#### Linear Probing + Tombstone: Find

- To find key k
  - Calculate i = h(k) % length
  - While table[i] has a tombstone or a key other than k, i = (i + 1) % length
  - If you come across k return table[i]
  - If you come across an empty index, the find was unsuccessful



#### Linear Probing + Tombstone: Insert

- To insert *k*, *v* 
  - Calculate i = h(k) % length
  - While table[i] has a key other than k, i = (i + 1) % length
    - If table[i] has a tombstone, set x = i
      - That is where we will insert if the find is unsuccessful
  - If you come across k, set table[i] = k, v
  - If you come across an empty index, the find was unsuccessful
    - Set table[x] = k, v if we saw a tombstone
    - Set *table*[*i*] = *k*, *v* otherwise

