Dictionary (Map) ADT

• Contents:
 • Sets of key+value pairs
 • Keys must be comparable

• Operations:
 • insert(key, value)
 • Adds the (key,value) pair into the dictionary
 • If the key already has a value, overwrite the old value
 • Consequence: Keys cannot be repeated
 • find(key)
 • Returns the value associated with the given key
 • delete(key)
 • Remove the key (and its associated value)
Naïve attempts

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Heap</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(\text{height})$</td>
<td>$\Theta(\text{height})$</td>
<td>$\Theta(\text{height})$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Improving the worst case

• How can we get a better worst case running time?
 • Add rules about the shape of our BST

• AVL Tree
 • A BST with some shape rules
 • Algorithms need to change to accommodate those
AVL Tree

• A Binary Search tree that maintains that the left and right subtrees of every node have heights that differ by at most one.
 • height of left subtree and height of right subtree off by at most 1
 • Not too weak (ensures trees are short)
 • Not too strong (works for any number of nodes)

• Idea of AVL Tree:
 • When you insert/delete nodes, if tree is “out of balance” then modify the tree
 • Modification = “rotation”
Is it an AVL Tree?
Using AVL Trees

- Each node has:
 - Key
 - Value
 - Height
 - Left child
 - Right child

![AVL Tree Diagram]

Key = 9
Value = “hello”
Height = 3
Left = Node 3
Right = Node 10
Inserting into an AVL Tree

• Starts out the same way as BST:
 • “Find” where the new node should go
 • Put it in the right place (it will be a leaf)

• Next check the balance
 • If the tree is still balanced, you’re done!
 • Otherwise we need to do rotations
Insert Example

```
10
```

```
9

3

1

6

11

16

0

2

7
```
Insert Example

-1
Not Balanced!

Solution: rotate the whole tree to the right

Height = 3

Height = 1
Balanced!
Right Rotation

• Make the left child the new root
• Make the old root the right child of the new
• Make the new root’s right subtree the old root’s left subtree
Insert Example

```
20
```

```
11
  /   \
 /     \n3       10
  /     / \
/     /   \
1       6    16
  / \
/   \
0   2
```

```
16
  /   \
/     \n18
```
Not Balanced!

Solution: rotate the deepest unbalanced root to the left
Balanced!
Left Rotation

- Make the right child the new root
- Make the old root the left child of the new
- Make the new root’s left subtree the old root’s right subtree
Insertion Story So Far

- After insertion, update the heights of the node's ancestors
- Check for unbalance
- If unbalanced then at the deepest unbalanced root:
 - If the left subtree was deeper then rotate right
 - If the right subtree was deeper then rotate left

This is incomplete! There are some cases where this doesn’t work!
Insertion Story So Far

• After insertion, update the heights of the node’s ancestors
• Check for unbalance
• If unbalanced then at the deepest unbalanced root:
 • Case LL: If we inserted in the left subtree of the left child then rotate right
 • Case RR: If we inserted in the right subtree of the right child then rotate left
 • Case LR: If we inserted into the right subtree of the left child then ???
 • Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 rotations!
Case LR

• From deepest unbalanced root:
 • Rotate left at the left child
 • Rotate right at the root
Case LR in General

- Imbalance caused by inserting in the left child’s right subtree
- Rotate left at the left child
- Rotate right at the unbalanced node
Case RL in General

- Imbalance caused by inserting in the right child’s left subtree
- Rotate right at the right child
- Rotate left at the unbalanced node
Insert Summary

• After a BST insertion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:
 • Case LL: If we inserted in the left subtree of the left child then: rotate right
 • Case RR: If we inserted in the right subtree of the right child then: rotate left
 • Case LR: If we inserted into the right subtree of the left child then: rotate left at the left child and then rotate right at the root
 • Case RL: If we inserted into the left subtree of the right child then: rotate right at the right child and then rotate left at the root
• Done after either reaching the root or applying one of the above cases
Delete Summary

- Tldr: same cases, reverse direction of rotation, may need to repeat with ancestors
- After a BST deletion, update the heights of the node’s ancestors
- From leaf to root, check if each node is unbalanced
- If a node is unbalanced then at the deepest unbalanced node:
 - Case LL: If we deleted in the left subtree of the left child then: rotate left
 - Case RR: If we deleted in the right subtree of the right child then: rotate right
 - Case LR: If we deleted into the right subtree of the left child then: rotate right at the left child and then rotate left at the root
 - Case RL: If we deleted into the left subtree of the right child then: rotate left at the right child and then rotate right at the root
- Continue checking until reach the root
Other Tree-based Dictionaries

• **Red-Black Trees**
 • Similar to AVL Trees in that we add shape rules to BSTs
 • More “relaxed” shape than an AVL Tree
 • Trees can be taller (though not asymptotically so)
 • Needs to move nodes less frequently
 • This is what Java’s TreeMap uses!

• **Tries**
 • Similar to a Huffman Tree
 • Requires keys to be sequences (e.g. Strings)
 • Combines shared prefixes among keys to save space
 • Often used for text-based searches
 • Web search
 • Genomes