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Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)



Naïve attempts

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(log 𝑛) Θ 𝑛 Θ 𝑛

Binary Search Tree Θ height Θ height Θ height

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)



Improving the worst case

• How can we get a better worst case running time?
• Add rules about the shape of our BST

• AVL Tree
• A BST with some shape rules

• Algorithms need to change to accommodate those



AVL Tree

• A Binary Search tree that maintains that the left and right subtrees of 
every node have heights that differ by at most one.
• height of left subtree and height of right subtree off by at most 1

• Not too weak (ensures trees are short)

• Not too strong (works for any number of nodes)

• Idea of AVL Tree:
• When you insert/delete nodes, if tree is “out of balance” then modify the tree

• Modification = “rotation”



Is it an AVL Tree?
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Using AVL Trees

• Each node has:
• Key

• Value

• Height

• Left child

• Right child
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Inserting into an AVL Tree

• Starts out the same way as BST:
• “Find” where the new node should go

• Put it in the right place (it will be a leaf)

• Next check the balance
• If the tree is still balanced, you’re done!

• Otherwise we need to do rotations



Insert Example 10

9

3 11

1 16

0

6

2 7



Insert Example
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Not Balanced!
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Height = 3 Height = 1

Solution: rotate the whole tree to the right
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Balanced!
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Right Rotation

• Make the left child the new root

• Make the old root the right child of the new

• Make the new root’s right subtree the old root’s left subtree
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Insert Example 20
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Not Balanced!

Solution: rotate the deepest 
unbalanced root to the left
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Balanced!
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Left Rotation

• Make the right child the new root

• Make the old root the left child of the new

• Make the new root’s left subtree the old root’s right subtree
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Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for unbalance

• If unbalanced then at the deepest unbalanced root:
• If the left subtree was deeper then rotate right

• If the right subtree was deeper then rotate left

This is incomplete!
There are some cases 
where this doesn’t work!
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Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for unbalance

• If unbalanced then at the deepest unbalanced root:
• Case LL: If we inserted in the left subtree of the left child then rotate right

• Case RR: If we inserted in the right subtree of the right child then rotate left

• Case LR: If we inserted into the right subtree of the left child then ???

• Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 
rotations!



Case LR 

• From deepest unbalanced root:
• Rotate left at the left child

• Rotate right at the root
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Case LR in General

• Imbalance caused by inserting in the left child’s right subtree

• Rotate left at the left child

• Rotate right at the unbalanced node
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Case RL in General

• Imbalance caused by inserting in the right child’s left subtree

• Rotate right at the right child

• Rotate left at the unbalanced node
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Insert Summary

• After a BST insertion, update the heights of the node’s ancestors

• From leaf to root, check if each node is unbalanced

• If a node is unbalanced then at the deepest unbalanced node:
• Case LL: If we inserted in the left subtree of the left child then: rotate right

• Case RR: If we inserted in the right subtree of the right child then: rotate left

• Case LR: If we inserted into the right subtree of the left child then: rotate left at 
the left child and then rotate right at the root

• Case RL: If we inserted into the left subtree of the right child then: rotate right at 
the right child and then rotate left at the root

• Done after either reaching the root or applying one of the above cases



Delete Summary

• Tldr: same cases, reverse direction of rotation, may need to repeat with 
ancestors

• After a BST deletion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:

• Case LL: If we deleted in the left subtree of the left child then: rotate left
• Case RR: If we deleted in the right subtree of the right child then: rotate right
• Case LR: If we deleted into the right subtree of the left child then: rotate right at the 

left child and then rotate left at the root
• Case RL: If we deleted into the left subtree of the right child then: rotate left at the 

right child and then rotate right at the root

• Continue checking until reach the root



Other Tree-based Dictionaries

• Red-Black Trees
• Similar to AVL Trees in that we add shape rules to BSTs
• More “relaxed” shape than an AVL Tree

• Trees can be taller (though not asymptotically so)
• Needs to move nodes less frequently

• This is what Java’s TreeMap uses!

• Tries
• Similar to a Huffman Tree
• Requires keys to be sequences (e.g. Strings)
• Combines shared prefixes among keys to save space
• Often used for text-based searches

• Web search
• Genomes
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