CSE 332 Summer 2024 Lecture 8: AVL Trees

Nathan Brunelle

http://www.cs.uw.edu/332

Dictionary (Map) ADT

- Contents:
 - Sets of key+value pairs
 - Keys must be comparable
- Operations:
 - insert(key, value)
 - Adds the (key,value) pair into the dictionary
 - If the key already has a value, overwrite the old value
 - Consequence: Keys cannot be repeated
 - find(key)
 - Returns the value associated with the given key
 - delete(key)
 - Remove the key (and its associated value)

Naïve attempts

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Heap	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	Θ(height)	Θ(height)	Θ(height)
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$

Improving the worst case

- How can we get a better worst case running time?
 - Add rules about the shape of our BST
- AVL Tree
 - A BST with some shape rules
 - Algorithms need to change to accommodate those

AVL Tree

- A Binary Search tree that maintains that the left and right subtrees of every node have heights that differ by at most one.
 - height of left subtree and height of right subtree off by at most 1
 - Not too weak (ensures trees are short)
 - Not too strong (works for any number of nodes)
- Idea of AVL Tree:
 - When you insert/delete nodes, if tree is "out of balance" then modify the tree
 - Modification = "rotation"

Using AVL Trees

- Each node has:
 - Key
 - Value
 - Height
 - Left child
 - Right child

Inserting into an AVL Tree

- Starts out the same way as BST:
 - "Find" where the new node should go
 - Put it in the right place (it will be a leaf)
- Next check the balance
 - If the tree is still balanced, you're done!
 - Otherwise we need to do rotations

Insert Example (10)

Insert Example (-1)

Not Balanced!

Balanced!

Right Rotation

- Make the left child the new root
- Make the old root the right child of the new
- Make the new root's right subtree the old root's left subtree

Insert Example (20)

Not Balanced!

Balanced!

Left Rotation

- Make the right child the new root
- Make the old root the left child of the new
- Make the new root's left subtree the old root's right subtree

Insertion Story So Far

- After insertion, update the heights of the node's ancestors
- Check for unbalance
- If unbalanced then at the deepest unbalanced root:
 - If the left subtree was deeper then rotate right
 - If the right subtree was deeper then rotate left

This is incomplete!
There are some cases
where this doesn't work!

Insertion Story So Far

- After insertion, update the heights of the node's ancestors
- Check for unbalance
- If unbalanced then at the deepest unbalanced root:
 - Case LL: If we inserted in the **left** subtree of the **left** child then rotate right
 - Case RR: If we inserted in the **right** subtree of the **right** child then rotate left
 - Case LR: If we inserted into the **right** subtree of the **left** child then ???
 - Case RL: If we inserted into the **left** subtree of the **right** child then ???

Cases LR and RL require 2 rotations!

Case LR

- From deepest unbalanced root:
 - Rotate left at the left child
 - Rotate right at the root

Case LR in General

- Imbalance caused by inserting in the left child's right subtree
- Rotate left at the left child
- Rotate right at the unbalanced node

Case RL in General

- Imbalance caused by inserting in the right child's left subtree
- Rotate right at the right child
- Rotate left at the unbalanced node

Insert Summary

- After a BST insertion, update the heights of the node's ancestors
- From leaf to root, check if each node is unbalanced
- If a node is unbalanced then at the deepest unbalanced node:
 - Case LL: If we inserted in the left subtree of the left child then: rotate right
 - Case RR: If we inserted in the **right** subtree of the **right** child then: rotate left
 - Case LR: If we inserted into the **right** subtree of the **left** child then: rotate left at the left child and then rotate right at the root
 - Case RL: If we inserted into the **left** subtree of the **right** child then: rotate right at the right child and then rotate left at the root
- Done after either reaching the root or applying one of the above cases

Delete Summary

- Tldr: same cases, reverse direction of rotation, may need to repeat with ancestors
- After a BST deletion, update the heights of the node's ancestors
- From leaf to root, check if each node is unbalanced
- If a node is unbalanced then at the deepest unbalanced node:
 - Case LL: If we deleted in the left subtree of the left child then: rotate left
 - Case RR: If we deleted in the **right** subtree of the **right** child then: **rotate right**
 - Case LR: If we deleted into the **right** subtree of the **left** child then: **rotate right** at the left child and then **rotate left** at the root
 - Case RL: If we deleted into the left subtree of the right child then: rotate left at the right child and then rotate right at the root
- Continue checking until reach the root

Other Tree-based Dictionaries

- Red-Black Trees
 - Similar to AVL Trees in that we add shape rules to BSTs
 - More "relaxed" shape than an AVL Tree
 - Trees can be taller (though not asymptotically so)
 - Needs to move nodes less frequently
 - This is what Java's TreeMap uses!
- Tries
 - Similar to a Huffman Tree
 - Requires keys to be sequences (e.g. Strings)
 - Combines shared prefixes among keys to save space
 - Often used for text-based searches
 - Web search
 - Genomes