Dictionary (Map) ADT

• Contents:
 • Sets of key+value pairs
 • Keys must be comparable

• Operations:
 • insert(key, value)
 • Adds the (key,value) pair into the dictionary
 • If the key already has a value, overwrite the old value
 • Consequence: Keys cannot be repeated
 • find(key)
 • Returns the value associated with the given key
 • delete(key)
 • Remove the key (and its associated value)
Naïve attempts

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Heap</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree (worst)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree (expected)</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
More Tree “Vocab”

• Traversal:
 • An algorithm for “visiting/processing” every node in a tree

• Pre-Order Traversal:
 • Root, Left Subtree, Right Subtree
 • D (U S 2) B

• In-Order Traversal:
 • Left Subtree, Root, Right Subtree

• Post-Order Traversal
 • Left Subtree, Right Subtree, Root
AorderTraversal(root){
 if (root.left != Null){
 process(root.left);
 }
 if (root.right != Null){
 process(root.right);
 }
 process(root);
}

BorderTraversal(root){
 process(root);
 if (root.left != Null){
 process(root.left);
 }
 if (root.right != Null){
 process(root.right);
 }
}

CorderTraversal(root){
 if (root.left != Null){
 process(root.left);
 }
 process(root);
 if (root.right != Null){
 process(root.right);
 }
}
Binary Search Tree

• Binary Tree
 • Definition:

• Order Property
 • All keys in the left subtree are smaller than the root
 • All keys in the right subtree are larger than the root

• Why?
Are these BSTs?
Aside: Why not use an array?

• We represented a heap using an array, finding children/parents by index
• We will represent BSTs with nodes and references. Why?
Find Operation (recursive)

find(key, root) {
 if (root == Null) {
 return Null;
 }
 if (key == root.key) {
 return root.value;
 }
 if (key < root.key) {
 return find(key, root.left);
 }
 if (key > root.key) {
 return find(key, root.right);
 }
 return Null;
}
Find Operation (iterative)

```java
find(key, root){
    while (root != Null && key != root.key){
        if (key < root.key){
            root = root.left;
        }
        else if (key > root.key){
            root = root.right;
        }
    }
    if (root == Null){
        return Null;
    }
    return root.value;
}
```
Insert Operation (recursive)

```
insert(key, value, root){
    root = insertHelper(key, value, root);
}
insertHelper(key, value, root){
    if(root == null)
        return new Node(key, value);
    if (root.key < key)
        root.right = insertHelper(key, value, root.right);
    else
        root.left = insertHelper(key, value, root.left);
    return root;
}
```

Note: Insert happens only at the leaves!
Insert Operation (iterative)

```java
insert(key, value, root){
    if (root == Null){ this.root = new Node(key, value); }
    parent = Null;
    while (root != Null && key != root.key){
        parent = root;
        if (key < root.key){ root = root.left; }
        else if (key > root.key){ root = root.right; }
    }
    if (root != Null){ root.value = value; }
    else if (key < parent.key){ parent.left = new Node(key, value); }
    else{ parent.right = new Node (key, value); }
}
```

Note: Insert happens only at the leaves!
Delete Operation (iterative)

delte(key, root){
 while (root != Null && key != root.key){
 if (key < root.key){ root = root.left; }
 else if (key > root.key){ root = root.right; }
 }
 if (root == Null){ return; }

 // Now root is the node to delete, what happens next?
}
Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child

• 2 Children
Finding the Max and Min

- **Max of a BST:**
 - Right-most Thing

- **Min of a BST:**
 - Left-most Thing

```java
maxNode(root){
    if (root == Null){ return Null; }
    while (root.right != Null){
        root = root.right;
    }
    return root;
}

minNode(root){
    if (root == Null){ return Null; }
    while (root.left != Null){
        root = root.left;
    }
    return root;
}
```
Delete Operation (iterative)

def delete(key, root):
 while (root != Null && key != root.key):
 if (key < root.key):
 root = root.left;
 else if (key > root.key):
 root = root.right;
 if (root == Null):
 return;
 if (root has no children):
 make parent point to Null Instead;
 if (root has one child):
 make parent point to that child instead;
 if (root has two children):
 make parent point to either the max from the left or min from the right
 return;
Worst Case Analysis

• For each of Find, insert, Delete:
 • Worst case running time matches height of the tree
• What is the maximum height of a BST with n nodes?
Improving the worst case

• How can we get a better worst case running time?
“Balanced” Binary Search Trees

• We get better running times by having “shorter” trees
• Trees get tall due to them being “sparse” (many one-child nodes)
• Idea: modify how we insert/delete to keep the tree more “full”
Idea 1: Both Subtrees of Root have same # Nodes
Idea 2: Both Subtrees of Root have same height
Idea 3: Both Subtrees of every Node have same # Nodes
Idea 4: Both Subtrees of every Node have same height
AVL Tree

- A Binary Search tree that maintains that the left and right subtrees of every node have heights that differ by at most one.
 - height of left subtree and height of right subtree off by at most 1
 - Not too weak (ensures trees are short)
 - Not too strong (works for any number of nodes)

- Idea of AVL Tree:
 - When you insert/delete nodes, if tree is “out of balance” then modify the tree
 - Modification = “rotation”
Is it an AVL Tree?
Using AVL Trees

• Each node has:
 • Key
 • Value
 • Height
 • Left child
 • Right child

Key = 9
Value = “hello”
Height = 3
Left = Node 3
Right = Node 10
Inserting into an AVL Tree

• Starts out the same way as BST:
 • “Find” where the new node should go
 • Put it in the right place (it will be a leaf)

• Next check the balance
 • If the tree is still balanced, you’re done!
 • Otherwise we need to do rotations
Insert Example

10

```
    9
   / \  \
  3   6
 /   / \  \
1   11 7
  \   /  \\
  0  2 16
```
Insert Example

```
-1
```

![Tree Diagram]

```
0 2 7
```

```
1 6
```

```
3 11
```

```
9
```

```
-1
```
Not Balanced!

Height = 3
Height = 1

Solution: rotate the whole tree to the right
Balanced!
Right Rotation

- Make the left child the new root
- Make the old root the right child of the new root
- Make the new root’s right subtree the old root’s left subtree
Insert Example 20
Not Balanced!

Solution: rotate the deepest unbalanced root to the left
Balanced!
Left Rotation

- Make the right child the new root
- Make the old root the left child of the new
- Make the new root’s left subtree the old root’s right subtree
Insertion Story So Far

• After insertion, update the heights of the node’s ancestors
• Check for unbalance
• If unbalanced then at the deepest unbalanced root:
 • If the left subtree was deeper then rotate right
 • If the right subtree was deeper then rotate left

This is incomplete!
There are some cases where this doesn’t work!
Insertion Story So Far

• After insertion, update the heights of the node’s ancestors
• Check for unbalance
• If unbalanced then at the deepest unbalanced root:
 • Case LL: If we inserted in the left subtree of the left child then rotate right
 • Case RR: If we inserted in the right subtree of the right child then rotate left
 • Case LR: If we inserted into the right subtree of the left child then ???
 • Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 rotations!
Case LR

• From deepest unbalanced root:
 • Rotate left at the left child
 • Rotate right at the root
Case LR in General

- Imbalance caused by inserting in the left child’s right subtree
- Rotate left at the left child
- Rotate right at the unbalanced node
Case RL in General

- Imbalance caused by inserting in the right child’s left subtree
- Rotate right at the right child
- Rotate left at the unbalanced node
Insert Summary

• After a BST insertion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:
 • Case LL: If we inserted in the left subtree of the left child then: rotate right
 • Case RR: If we inserted in the right subtree of the right child then: rotate left
 • Case LR: If we inserted into the right subtree of the left child then: rotate left at the left child and then rotate right at the root
 • Case RL: If we inserted into the left subtree of the right child then: rotate right at the right child and then rotate left at the root
• Done after either reaching the root or applying one of the above cases
Delete Summary

• Tldr: same cases, reverse direction of rotation, may need to repeat with ancestors
• After a BST deletion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:
 • Case LL: If we deleted in the left subtree of the left child then: rotate left
 • Case RR: If we deleted in the right subtree of the right child then: rotate right
 • Case LR: If we deleted into the right subtree of the left child then: rotate right at the left child and then rotate left at the root
 • Case RL: If we deleted into the left subtree of the right child then: rotate left at the right child and then rotate right at the root
• Continue checking until reach the root