
CSE 332 Summer 2024
Lecture 6: Priority Queues &

Dictionaries
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Warm Up

• Describe an algorithm for finding the maximum value in a min heap.

• The last
𝑛

2
nodes in the heap are leaves, the max must be a leaf, we just check

the last
𝑛

2
items

• What is its running time?

ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• Usually a smaller priority value means the item is “more important”

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• extract

• Remove and return the “top priority” item from the queue
• Usually the item with the smallest priority value

• IsEmpty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(1)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 𝑛

Binary Heap Θ log 𝑛 Θ log 𝑛

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers…)

Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right

1

3 2

4 7 5 6

5 9

(Min) Heap Data Structure
• Keep items in a complete binary tree

• All “layers” are full, except the bottom

• Bottom layer filled left-to-right

• Maintain the “(Min) Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority

• Minimum is always the root!

1

3 2

4 7 5 6

5 9

Representing a Heap
• Every complete binary tree with the same

number of nodes uses the same positions and
edges

• Use an array to represent the heap

• Index of root: 1

• Parent of node 𝑖:
𝑖

2

• Left child of node 𝑖: 2𝑖

• Right child of node 𝑖: 2𝑖 + 1

• Location of the leaves:

• Last
𝑛

2
 indices

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9

Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛

Percolate Up

percolateUp(int i){

 int parent = i/2; \\ index of parent

 Item val = arr[i]; \\ value at current location

 while(i > 1 && arr[i] < arr[parent]){ \\ until location is root or heap property holds

 arr[i] = arr[parent]; \\ move parent value to this location

 arr[parent] = val; \\ put current value into parent’s location

 i = parent; \\ make current location the parent

 parent = i/2; \\ update new parent

 }

}

Percolate Down
percolateDown(int i){

 int left = i*2; \\ index of left child

 int right = i*2+1; \\ index of right child

 Item val = arr[i]; \\ value at location

 while(left <= size){ \\ until location is leaf

 int toSwap = right;

 if(right > size || arr[left] < arr[right]){ \\ if there is no right child or if left child is smaller

 toSwap = left; \\ swap with left

 } \\ now toSwap has the smaller of left/right, or left if right does not exist

 if (arr[toSwap] < val){ \\ if the smaller child is less than the current value

 arr[i] = arr[toSwap];

 arr[toSwap] = val; \\ swap parent with smaller child

 i = toSwap; \\ update current node to be smaller child

 left = i*2;

 right = i*2+1;

 }

 else{ return;} \\ if we don’t swap, then heap property holds

 }

}

Operations
• Insert

• Make the new item last in the array, percolate up

• Extract
• Move the last item to the root, percolate down

• Increase Key
• Given the index of an item in the PQ, make its priority value larger

• Min Heap: Then percolate Down
• Max Heap: Then percolate Up

• Decrease Key
• Given the index of an item in the PQ, make its priority value smaller

• Min Heap: Then percolate Up
• Max Heap: Then percolate Down

• Remove
• Return the item at the given index from the PQ, remove that item from the PQ

• Incorrect algorithm: consider the subtree rooted at the given index, perform an extract on
that subtree

Operations
• Insert

• Place new item last in the array, percolate it up

• Extract
• Save root’s value, move last item to root, percolate it down

• Increase Key
• Given the index of an item in the PQ, make its priority value larger

• Min Heap: Then percolate Down
• Max Heap: Then percolate Up

• Decrease Key
• Given the index of an item in the PQ, make its priority value smaller

• Min Heap: Then percolate Up
• Max Heap: Then percolate Down

• Remove
• Return the item at the given index from the PQ, remove that item from the PQ

• Save value at the given index, move last item to that index, percolated it down

Aside: Expected Running time of Insert

• Assume I have a heap with 𝑛 items in it. I insert a “random” item.

• Probability that the item is a leaf of the heap
• Roughly half the nodes in a heap are leaves
• There is a 50% chance of needing to do 1 comparison

• The new node is the parent of a leaf
• We do 2 comparisons

•
𝑛

4

•
1

2
+ 2 ⋅

1

4
+ 3 ⋅

1

8
+ 4 ⋅

1

16
+⋯

• Θ 1

Building a Heap From “Scratch”

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down

Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!
Nodes bigger than a child

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 1 8 7

14 2

1

2 3

4 65 7

8 9

15

10

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Violate Heap Property!
Nodes bigger than a child

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

2 1 8 7

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 7

2 1 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

1 7

2 6 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

1

2 7

3 6 8 10

14 5

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

How long did this take?

• Worst case running time of buildHeap:

• No node can percolate down more than the height of its subtree
• When i is a leaf: 1

• When i is second-from-last level: 2

• When i is third-from-last level: 3

• Overall Running time:

•
𝑛

2
+ 2 ⋅

𝑛

4
+ 3 ⋅

𝑛

8
+⋯

• Θ(𝑛)

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)

Naïve attempts

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(𝑛) Θ(𝑛) Θ(𝑛)

Less Naïve attempts

• Binary Search Trees (today)

• AVL Trees (Wednesday/Friday)

• Hash Tables (Next week)

• Red-Black Trees (not included in this course)

• Splay Trees (not included in this course)

• Tries (not included in this course)

• B-Trees (included in 331)

Naïve attempts

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(log 𝑛) Θ 𝑛 Θ 𝑛

Binary Search Tree
(worst)

Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree
(expected)

Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Tree Height

treeHeight(root){
 height = 0;
 if (root.left != Null){
 height = max(height, treeHeight(root.left));
 }
 if (root.right != Null){
 height = max(height, treeHeight(root.right));
 }
 return 1 + height;
}

More Tree “Vocab”

• Traversal:
• An algorithm for “visiting/processing” every node in a tree

• Pre-Order Traversal:
• Root, Left Subtree, Right Subtree
• D (U S 2) B

• In-Order Traversal:
• Left Subtree, Root, Right Subtree

• Post-Order Traversal
• Left Subtree, Right Subtree, Root

D

U B

S 2

Name that Traversal!

AorderTraversal(root){
 if (root.left != Null){
 process(root.left);
 }
 if (root.right != Null){
 process(root.right);
 }
 process(root);
}

BorderTraversal(root){
 process(root);
 if (root.left != Null){
 process(root.left);
 }
 if (root.right != Null){
 process(root.right);
 }
}

CorderTraversal(root){
 if (root.left != Null){
 process(root.left);
 }
 process(root)
 if (root.right != Null){
 process(root.right);
 }
}

Binary Search Tree

• Binary Tree
• Definition:

• Order Property
• All keys in the left subtree are smaller than the root

• All keys in the right subtree are larger than the root

• Why?

7

3 10

1 6 8 16

0 2

Are these BSTs?

7

3 10

1 16

0

7

3

10

1

16

0

7

3 10

1 16

0

7

7

3 10

1 16

0

8

Aside: Why not use an array?

• We represented a heap using an array, finding children/parents by
index

• We will represent BSTs with nodes and references. Why?

Find Operation (recursive)
find(key, root){

 if (root == Null){

 return Null;

 {

 if (key == root.key){

 return root.value;

 }

 if (key < root.key){

 return find(key, root.left);

 }

 if (key > root.key){

 return find(key, root.right);

 }

 return Null;

}

7

3 10

1 16

0

6

Find Operation (iterative)
find(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){

 root = root.left;

 }

 else if (key > root.key){

 root = root.right;

 }

 }

 if (root == Null){

 return Null;

 }

 return root.value;

}

7

3 10

1 16

0

6

Insert Operation (recursive)
insert(key, value, root){

 root = insertHelper(key, value, root);

}

insertHelper(key, value, root){

 if(root == null)

 return new Node(key, value);

 if (root.key < key)

 root.right = insertHelper(key, value, root.right);

 else

 root.left = insertHelper(key, value, root.left);

 return root;

}

7

3 10

1 16

0

6

Note: Insert happens only at the leaves!

Insert Operation (iterative)
insert(key, value, root){

 if (root == Null){ this.root = new Node(key, value); }

 parent = Null;

 while (root != Null && key != root.key){

 parent = root;

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root != Null){ root.value = value; }

 else if (key < parent.key){ parent.left = new Node(key, value); }

 else{ parent.right = new Node (key, value); }

}

7

3 10

1 16

0

6

Note: Insert happens only at the leaves!

Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 // Now root is the node to delete, what happens next?

}

9

3 10

1 16

0

6

5 7

Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child

• 2 Children

9

3 10

1 16

0

6

5 7

Finding the Max and Min

• Max of a BST:
• Right-most Thing

• Min of a BST:
• Left-most Thing

9

3 10

1 16

0

6

5 7

maxNode(root){
 if (root == Null){ return Null; }
 while (root.right != Null){
 root = root.right;
 }
 return root;
}

minNode(root){
 if (root == Null){ return Null; }
 while (root.left != Null){
 root = root.left;
 }
 return root;
}

Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 if (root has no children){

 make parent point to Null Instead;

 }

 if (root has one child){

 make parent point to that child instead;

 }

 if (root has two children){

 make parent point to either the max from the left or min from the right

 }

}

9

3 10

1 16

0

6

5 7

Worst Case Analysis

• For each of Find, insert, Delete:
• Worst case running time matches height of the tree

• What is the maximum height of a BST with 𝑛 nodes?

Improving the worst case

• How can we get a better worst case running time?

	Slide 1: CSE 332 Summer 2024 Lecture 6: Priority Queues & Dictionaries
	Slide 2: Warm Up
	Slide 3: ADT: Priority Queue
	Slide 4: Thinking through implementations
	Slide 5: Trees for Heaps
	Slide 6: (Min) Heap Data Structure
	Slide 7: Representing a Heap
	Slide 8: Percolate Up and Down (for a Min Heap)
	Slide 9: Percolate Up
	Slide 10: Percolate Down
	Slide 11: Operations
	Slide 12: Operations
	Slide 13: Aside: Expected Running time of Insert
	Slide 14: Building a Heap From “Scratch”
	Slide 15: Floyd’s buildHeap method
	Slide 16: Floyd’s buildHeap method
	Slide 17: Floyd’s buildHeap method
	Slide 18: Floyd’s buildHeap method
	Slide 19: Floyd’s buildHeap method
	Slide 20: Floyd’s buildHeap method
	Slide 21: Floyd’s buildHeap method
	Slide 22: How long did this take?
	Slide 23: Dictionary (Map) ADT
	Slide 24: Naïve attempts
	Slide 25: Less Naïve attempts
	Slide 26: Naïve attempts
	Slide 27: Tree Height
	Slide 28: More Tree “Vocab”
	Slide 29: Name that Traversal!
	Slide 30: Binary Search Tree
	Slide 31: Are these BSTs?
	Slide 32: Aside: Why not use an array?
	Slide 33: Find Operation (recursive)
	Slide 34: Find Operation (iterative)
	Slide 35: Insert Operation (recursive)
	Slide 36: Insert Operation (iterative)
	Slide 37
	Slide 38: Delete Operation (iterative)
	Slide 39: Delete – 3 Cases
	Slide 40: Finding the Max and Min
	Slide 41: Delete Operation (iterative)
	Slide 42: Worst Case Analysis
	Slide 43: Improving the worst case

