CSE 332 Summer 2024
Lecture 6: Priority Queues & Dictionaries

Nathan Brunelle

http://www.cs.uw.edu/332
Warm Up

• Describe an algorithm for finding the maximum value in a min heap.
 • The last $\frac{n}{2}$ nodes in the heap are leaves, the max must be a leaf, we just check
 the last $\frac{n^2}{2}$ items
 • What is its running time?
ADT: Priority Queue

• What is it?
 • A collection of items and their “priorities”
 • Allows quick access/removal to the “top priority” thing
 • Usually a smaller priority value means the item is “more important”

• What Operations do we need?
 • insert(item, priority)
 • Add a new item to the PQ with indicated priority
 • extract
 • Remove and return the “top priority” item from the queue
 • Usually the item with the smallest priority value
 • isEmpty
 • Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable (i.e. you can use “<” or “compareTo” with it)
Thinking through implementations

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Worst case time to insert</th>
<th>Worst case time to extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Binary Heap</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
</tr>
</tbody>
</table>

For simplicity, Assume we know the maximum size of the PQ in advance (otherwise we’d do an amortized analysis, but get the same answers...
Trees for Heaps

• Binary Trees:
 • The branching factor is 2
 • Every node has \(\leq 2 \) children

• Complete Tree:
 • All “layers” are full, except the bottom
 • Bottom layer filled left-to-right
(Min) Heap Data Structure

- Keep items in a complete binary tree
 - All “layers” are full, except the bottom
 - Bottom layer filled left-to-right
- Maintain the “(Min) Heap Property” of the tree
 - Every node’s priority is ≤ its children’s priority
- Minimum is always the root!
Representing a Heap

• Every complete binary tree with the same number of nodes uses the same positions and edges
• Use an array to represent the heap
• Index of root: 1
• Parent of node i: $\left\lfloor \frac{i}{2} \right\rfloor$
• Left child of node i: $2i$
• Right child of node i: $2i + 1$
• Location of the leaves:
 • Last $\left\lfloor \frac{n}{2} \right\rfloor$ indices
Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
 • Take a node that may be smaller than a parent, repeatedly swap with a parent until it is larger than its parent

• Percolate Down:
 • Take a node that may be larger than one of its children, repeatedly swap with smallest child until both children are larger

• Worst case running time of each:
 • $\Theta(\log n)$
Percolate Up

percolateUp(int i){
 int parent = i/2; \ index of parent
 Item val = arr[i]; \ value at current location
 while(i > 1 && arr[i] < arr[parent]){ \ until location is root or heap property holds
 arr[i] = arr[parent]; \ move parent value to this location
 arr[parent] = val; \ put current value into parent’s location
 i = parent; \ make current location the parent
 parent = i/2; \ update new parent
 }
}
}
Percolate Down

```java
percolateDown(int i) {
    int left = i * 2;  // index of left child
    int right = i * 2 + 1;  // index of right child
    Item val = arr[i];  // value at location
    while (left <= size) {  // until location is leaf
        int toSwap = right;
        if (right > size || arr[left] < arr[right]) {  // if there is no right child or if left child is smaller
            toSwap = left;  // swap with left
        }  // now toSwap has the smaller of left/right, or left if right does not exist
        if (arr[toSwap] < val) {  // if the smaller child is less than the current value
            arr[i] = arr[toSwap];
            arr[toSwap] = val;  // swap parent with smaller child
            i = toSwap;  // update current node to be smaller child
            left = i * 2;
            right = i * 2 + 1;
        }
    }
    else { return; }  // if we don’t swap, then heap property holds
}
```
Operations

- **Insert**
 - Make the new item last in the array, percolate up
- **Extract**
 - Move the last item to the root, percolate down
- **Increase Key**
 - Given the index of an item in the PQ, make its priority value larger
 - Min Heap: Then percolate Down
 - Max Heap: Then percolate Up
- **Decrease Key**
 - Given the index of an item in the PQ, make its priority value smaller
 - Min Heap: Then percolate Up
 - Max Heap: Then percolate Down
- **Remove**
 - Return the item at the given index from the PQ, remove that item from the PQ
 - Incorrect algorithm: consider the subtree rooted at the given index, perform an extract on that subtree
Operations

• Insert
 • Place new item last in the array, percolate it up

• Extract
 • Save root’s value, move last item to root, percolate it down

• Increase Key
 • Given the index of an item in the PQ, make its priority value larger
 • Min Heap: Then percolate Down
 • Max Heap: Then percolate Up

• Decrease Key
 • Given the index of an item in the PQ, make its priority value smaller
 • Min Heap: Then percolate Up
 • Max Heap: Then percolate Down

• Remove
 • Return the item at the given index from the PQ, remove that item from the PQ
 • Save value at the given index, move last item to that index, percolated it down
Aside: Expected Running time of Insert

• Assume I have a heap with \(n \) items in it. I insert a “random” item.

• Probability that the item is a leaf of the heap
 • Roughly half the nodes in a heap are leaves
 • There is a 50% chance of needing to do 1 comparison

• The new node is the parent of a leaf
 • We do 2 comparisons
 • \(\frac{n}{4} \)
 • \(\frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{16} + \ldots \)
 • \(\Theta(1) \)
Suppose we had \(n \) items and wanted to “heapify” them.

Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down
Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

```java
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them

Violate Heap Property!
Nodes bigger than a child

buildHeap()
{
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them

```
buildHeap()
{
    for (int i = size; i > 0; i--)
    {
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had \(n \) items and wanted to “heapify” them

```java
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them

```java
buildHeap()
{
    for(int i = size; i>0; i--)
    {
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

• Suppose we had n items and wanted to “heapify” them

```java
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
Floyd’s buildHeap method

- Suppose we had n items and wanted to “heapify” them

```java
buildHeap()
{
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
How long did this take?

- Worst case running time of buildHeap:
- No node can percolate down more than the height of its subtree
 - When i is a leaf: 1
 - When i is second-from-last level: 2
 - When i is third-from-last level: 3
- Overall Running time:
 - $\frac{n}{2} + 2 \cdot \frac{n}{4} + 3 \cdot \frac{n}{8} + \ldots$
 - $\Theta(n)$

```
buildHeap()
{
    for(int i = size; i > 0; i--)
    {
        percolateDown(i);
    }
}
```
Dictionary (Map) ADT

• Contents:
 • Sets of key+value pairs
 • Keys must be comparable

• Operations:
 • insert(key, value)
 • Adds the (key,value) pair into the dictionary
 • If the key already has a value, overwrite the old value
 • Consequence: Keys cannot be repeated
 • find(key)
 • Returns the value associated with the given key
 • delete(key)
 • Remove the key (and its associated value)
Naïve attempts

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Heap</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
Less Naïve attempts

• Binary Search Trees (today)
• AVL Trees (Wednesday/Friday)
• Hash Tables (Next week)
• Red-Black Trees (not included in this course)
• Splay Trees (not included in this course)
• Tries (not included in this course)
• B-Trees (included in 331)
Naïve attempts

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Heap</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree (worst)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree (expected)</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Tree Height

treeHeight(root){
 height = 0;
 if (root.left != Null){
 height = max(height, treeHeight(root.left));
 }
 if (root.right != Null){
 height = max(height, treeHeight(root.right));
 }
 return 1 + height;
}
More Tree “Vocab”

• Traversal:
 • An algorithm for “visiting/processing” every node in a tree

• Pre-Order Traversal:
 • Root, Left Subtree, Right Subtree
 • D (U S 2) B

• In-Order Traversal:
 • Left Subtree, Root, Right Subtree

• Post-Order Traversal
 • Left Subtree, Right Subtree, Root
Name that Traversal!

AorderTraversal(root){
 if (root.left != Null)
 process(root.left);
 if (root.right != Null)
 process(root.right);
 process(root);
}

BorderTraversal(root){
 process(root);
 if (root.left != Null)
 process(root.left);
 if (root.right != Null)
 process(root.right);
}

CorderTraversal(root){
 if (root.left != Null)
 process(root.left);
 process(root);
 if (root.right != Null)
 process(root.right);
}

Binary Search Tree

• Binary Tree
 • Definition:

• Order Property
 • All keys in the left subtree are smaller than the root
 • All keys in the right subtree are larger than the root

• Why?
Are these BSTs?
Aside: Why not use an array?

• We represented a heap using an array, finding children/parents by index
• We will represent BSTs with nodes and references. Why?
Find Operation (recursive)

find(key, root) {
 if (root == Null) {
 return Null;
 }
 if (key == root.key) {
 return root.value;
 }
 if (key < root.key) {
 return find(key, root.left);
 }
 if (key > root.key) {
 return find(key, root.right);
 }
 return Null;
}
Find Operation (iterative)

```java
find(key, root)
    while (root != Null && key != root.key){
        if (key < root.key){
            root = root.left;
        }
        else if (key > root.key){
            root = root.right;
        }
    }
    if (root == Null){
        return Null;
    }
    return root.value;
```
Insert Operation (recursive)

```java
insert(key, value, root){
    root = insertHelper(key, value, root);
}

insertHelper(key, value, root){
    if(root == null)
        return new Node(key, value);
    if (root.key < key)
        root.right = insertHelper(key, value, root.right);
    else
        root.left = insertHelper(key, value, root.left);
    return root;
}
```

Note: Insert happens only at the leaves!
Insert Operation (iterative)

\[
\text{insert(key, value, root)}\{
\text{if (root == Null)}\{ \text{this.root} = \text{new Node(key, value)}; \}
\text{parent} = \text{Null};
\text{while (root != Null && key != root.key)}\{
\text{parent} = \text{root};
\text{if (key < root.key)}\{ \text{root} = \text{root.left}; \}
\text{else if (key > root.key)}\{ \text{root} = \text{root.right}; \}
\}
\text{if (root != Null)}\{ \text{root.value} = \text{value}; \}
\text{else if (key < parent.key)}\{ \text{parent.left} = \text{new Node(key, value)}; \}
\text{else}\{ \text{parent.right} = \text{new Node (key, value)}; \}
\}
\]

Note: Insert happens only at the leaves!
Delete Operation (iterative)

delete(key, root){
 while (root != Null && key != root.key){
 if (key < root.key){ root = root.left; }
 else if (key > root.key){ root = root.right; }
 }
 if (root == Null){ return; }
 // Now root is the node to delete, what happens next?
}
Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child

• 2 Children
Finding the Max and Min

• Max of a BST:
 • Right-most Thing

• Min of a BST:
 • Left-most Thing

```
maxNode(root){
    if (root == Null){ return Null; }
    while (root.right != Null){
        root = root.right;
    }
    return root;
}

minNode(root){
    if (root == Null){ return Null; }
    while (root.left != Null){
        root = root.left;
    }
    return root;
}
```
Delete Operation (iterative)

delete(key, root){
 while (root != Null && key != root.key){
 if (key < root.key){ root = root.left; }
 else if (key > root.key){ root = root.right; }
 }
 if (root == Null){ return; }
 if (root has no children){
 make parent point to Null Instead;
 }
 if (root has one child){
 make parent point to that child instead;
 }
 if (root has two children){
 make parent point to either the max from the left or min from the right
 }
}
Worst Case Analysis

• For each of Find, insert, Delete:
 • Worst case running time matches height of the tree
• What is the maximum height of a BST with \(n \) nodes?
Improving the worst case

• How can we get a better worst case running time?