CSE 332 Summer 2024 Lecture 4: Recurrences

Nathan Brunelle
http://www.cs.uw.edu/332

Warm Up: Practice with O

Show $n^{2}+3 n$ belongs to $O\left(4 n^{3}\right)$

More Examples

- Is each of the following True or False?
- $4+3 n \in O(n)$
- $n+2 \log n \in O(\log n)$
- $\log n+2 \in O(1)$
- $n^{50} \in O\left(1.1^{n}\right)$
- $3^{n} \in \Theta\left(2^{n}\right)$

Gaining Intuition

- When doing asymptotic analysis of functions:
- If multiple expressions are added together, ignore all but the "biggest"
- If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n)+g(n) \in \Theta(f(n))$
- Ignore all multiplicative constants
- $f(n)+c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
- Ignore bases of logarithms
- Do NOT ignore:
- Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
- Logarithms themselves
- Examples:
- $4 n+5$
- $0.5 n \log n+2 n+7$
- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

Common Categories

- $O(1)$ "constant"
- $O(\log n)$ "logarithmic"
- $O(n)$ "linear"
- $O(n \log n)$ "log-linear"
- $O\left(n^{2}\right)$ "quadratic"
- $O\left(n^{3}\right)$ "cubic"
- $O\left(n^{k}\right)$ "polynomial"
- $O\left(k^{n}\right)$ "exponential"

Defining your running time function

- Worst-case complexity:
- max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
- min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
- avg number of steps algorithm takes on random inputs (contextdependent)
- Amortized complexity:
- max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

- Worst case, Best case, amortized are ways to select a function
- O, Ω, Θ are ways to compare functions
- You can mix and match!
- The following statements totally make sense!
- The worst case running time of my algorithm is $\Omega\left(n^{3}\right)$
- The best case running time of my algorithm is $O(n)$
- The best case running time of my algorithm is $\Theta\left(2^{n}\right)$

Recursive Binary Search

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

public static boolean binarySearch(List<Integer> lst, int k)\{ return binarySearch(lst, k, 0, lst.size()); \}

```
private static boolean binarySearch(List<Integer> lst, int k, int start, int end){
```

 if(start == end)
 return false;
 int mid \(=\) start \(+(\) end-start) \(/ 2\);
 if(lst.get(mid) == k) \{
 return true;
 \} else if(lst.get(mid) >k)\{
 return binarySearch(lst, k, start, mid);
 \} else\{
 return binarySearch(lst, k, mid+1, end);
 \}
 \}

Analysis of Recursive Algorithms

- Overall structure of recursion:
- Do some non-recursive "work"
- Do one or more recursive calls on some portion of your input
- Do some more non-recursive "work"
- Repeat until you reach a base case
- Running time: $T(n)=T\left(p_{1}\right)+T\left(p_{2}\right)+\cdots+T\left(p_{x}\right)+f(n)$
- The time it takes to run the algorithm on an input of size n is:
- The sum of how long it takes to run the same algorithm on each smaller input
- Plus the total amount of non-recursive work done at that step
- Usually:
- $T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)$
- Called "divide and conquer"
- $T(n)=T(n-c)+f(n)$
- Called "chip and conquer"

How Efficient Is It?

- $T(n)=1+T\left(\left\lceil\left.\frac{n}{2} \right\rvert\,\right)\right.$
- Base case: $T(1)=1$
$T(n)=$ "cost" of running the entire algorithm on an array of length n

Let's Solve the Recurrence!

$T(n)=\sum_{i=1}^{\log _{2} n} 1=\log _{2} n$
$T(n) \in \Theta(\log n)$

Make our method "prettier"
 $$
T(n)=T\left(\frac{n}{2}\right)+1
$$

- Draw a picture of the recursion
- Identify the work done per stack frame
- Add up all the work!
- Sum is the answer!
- In this case $\Theta\left(\log _{2} n\right)$

The "Tree Method"

Recursive Linear Search

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

```
public static boolean linearSearch(List<Integer> lst, int k){
        return linearSearch(lst, k, 0, lst.size());
    }
private static boolean linearSearch(List<Integer> lst, int k, int start, int end){
    if(start == end){
        return false;
    } else if(lst.get(start) == k){
        return true;
    } else{
        return linearSearch(lst, k, start+1, end);
    }
}
```


Make our method "prettier"

$$
T(n)=T(n-1)+1
$$

- Draw a picture of the recursion
- Identify the work done per stack frame
- Add up all the work!

Running time: $\Theta(n)$

Recursive List Summation

```
sum(list){
    return sum_helper(list, 0, list.size);
}
sum_helper(list, low, high){
    if (low == high){ return 0; }
    if (low == high-1){ return list[low]; }
    middle = (high+low)/2;
    return sum_helper(list, low, middle) + sum_helper(list, middle, high);
}
```


Tree Method

Recursive List Summation

$$
\begin{aligned}
& T(n)=\sum_{i=1}^{\log _{2} n} 2^{i} \cdot c \\
& =c \cdot \sum_{i=1}^{\log _{2} n} 2^{i} \\
& =c\left(\frac{1-2^{\log _{2} n}}{1-2}\right)
\end{aligned}
$$

Let's do some more!

- For each, assume the base case is $n=1$ and $T(1)=1$
- $T(n)=2 T\left(\frac{n}{2}\right)+n$
- $T(n)=2 T\left(\frac{n}{2}\right)+n^{2}$
- $T(n)=2 T\left(\frac{n}{8}\right)+1$

Tree Method

Tree Method

Red box represents a problem instance
Blue value represents time spent at that level of recursion

$$
T(n)=2 T\left(\frac{n}{2}\right)+n^{2}
$$

Recursive List Summation

$$
\begin{aligned}
& T(n)=\sum_{i=1}^{\log _{2} n} \frac{n^{2}}{2^{i}} \\
& =n^{2} \cdot \sum_{i=1}^{\log _{2} n}\left(\frac{1}{2}\right)^{i}
\end{aligned}
$$

Tree Method

Recursive List Summation

$$
\begin{aligned}
& T(n)=\sum_{i=1}^{\log _{8} n} 2^{i} \\
& =\left(\frac{1-2^{\log _{8} n}}{1-2}\right) \\
& =2^{\log _{8} n}-1 \\
& =n^{\log _{8} 2}=n^{\frac{1}{3}}
\end{aligned}
$$

Finite Geometric Series
If $a>1$

Finite Geometric Series

If $a<1$

