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Warm Up: Practice with O

Show n? + 3n belongs to 0(4n3)



More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" e 02"



Gaining Intuition

* When doing asymptotic analysis of functions:
* |If multiple expressions are added together, ignore all but the “biggest”
« If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € 0(f(n))
* Ignore all multiplicative constants
* f(n) + c € O(f(n)) for any constant ¢ € R
* Ignore bases of logarithms

* Do NOT ignore:

* Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
* Logarithms themselves

* Examples:
*4n + 5
* 0.5nlogn + 2n + 7
* n*+ 2"+ 3n
« nlog(10n?)



Common Categories

*0(1) “constant”
* O(logn) “logarithmic”
* 0(n) “linear”

* O(nlogn) “log-linear”

* 0(n?) “quadratic”

« 0(n3) “cubic”

- 0(n*)  “polynomial”
e O(k™) “exponential”



Defining your running time function

* Worst-case complexity:
* max humber of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:

* avg number of steps algorithm takes on random inputs (context-
dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).



Beware!

* Worst case, Best case, amortized are ways to select a function
e 0, (), ® are ways to compare functions
* You can mix and match!

* The following statements totally make sense!
 The worst case running time of my algorithm is Q(n3)
* The best case running time of my algorithm is O(n)
* The best case running time of my algorithm is ©(2")



Recursive Binary Search
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public static boolean binarySearch(List<Integer> 1lst, int k){

return binarySearch(1lst, k, 0, lst.size());
}
private static boolean binarySearch(List<Integer> 1lst, int k, int start, int end){
if(start == end)
return false;
int mid = start + (end-start)/2;
if(lst.get(mid) == k){
return true;
} else if(lst.get(mid) > k){
return binarySearch(1lst, k, start, mid);
} else{
return binarySearch(1lst, k, mid+1, end);



Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
Do some more non-recursive “work”
e Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
e Plus the total amount of non-recursive work done at that step

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

* Called “chip and conquer”



How Efficient Is It?

n T(n) = “cost” of running the entire
* T(n) =1+T ([ED algorithm on an array of length n

* Basecase:T(1) =1
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Let’s Solve the Recurrence!
T(1) =1 _
T(n) ]

__Substitute until T(1)
So log, n steps

T(n) = z 1 =1log,n T(n) € O(logn)
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Make our method “prettier” T =7 () +1

* Draw a picture of the recursion n b
* |dentify the work done per stack frame ! .
* Add up all the work! n/lZ
e Sum is the answer! n/4 1
* In this case ©(log, n) I > log, n levels
. of recursion
n/8
\
1




Recursive Linear Search
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public static boolean linearSearch(List<Integer> lst, int k){

return linearSearch(1lst, k, 0, 1lst.size());

}

private static boolean linearSearch(List<Integer> 1lst, int k, int start, int end){

if(start == end){
return false;

} else if(lst.get(start) == k){
return true;

} else{

return linearSearch(1lst, k, start+l, end);



( S, Tm)=Tn—1)+1
Make our method “prettier A

* Draw a picture of the recursion n b
* |dentify the work done per stack frame ! .
e Add up all the work! n i 1
1
n—2 > n levels
} 3 | of recursion
n —
° ° ¢
Running time: 0(n)
1




Recursive List Summation

sum(list){
return sum_helper(list, O, list.size);
}
sum_helper(list, low, high){
if (low == high){ return O; }
if (low == high-1){ return list[low]; }
middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);



Tree Method
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Recursive List Summation

logr, n

T(n) = zzi-c

=1




Let’s do some more!

* For each, assume the base caseisn =1and T(1) =1
+ T(n) = 2T (3) +n

e T(n) = 2T (3) +n?

e T(n) = 2T (g) +1



Tree Method
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Tree Method
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Recursive List Summation

log, n )
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Tree Method )
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Recursive List Summation

logg n
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Finite Geometric Series

Ifa>1

n =
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multiplied by a in the series
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The first term
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Ifa <1

b

Finite Geometric Series

[
The series : .
L The series The next term The first term
multiplied by a in the series
\(1+a+a2+---+aL)a (1+a+a?+--+a")1 qltl 1
|

Solve for the series

25



	Slide 1: CSE 332 Summer 2024 Lecture 4: Recurrences
	Slide 2: Warm Up: Practice with cap O
	Slide 3: More Examples
	Slide 4: Gaining Intuition
	Slide 5: Common Categories
	Slide 6: Defining your running time function
	Slide 7: Beware!
	Slide 8: Recursive Binary Search
	Slide 9: Analysis of Recursive Algorithms
	Slide 10: How Efficient Is It?
	Slide 11: Let’s Solve the Recurrence!
	Slide 12: Make our method “prettier”
	Slide 13: Recursive Linear Search
	Slide 14: Make our method “prettier”
	Slide 15: Recursive List Summation
	Slide 16: Tree Method
	Slide 17: Recursive List Summation
	Slide 18: Let’s do some more!
	Slide 19: Tree Method
	Slide 20: Tree Method
	Slide 21: Recursive List Summation
	Slide 22: Tree Method
	Slide 23: Recursive List Summation
	Slide 24: Finite Geometric Series
	Slide 25: Finite Geometric Series

