## CSE 332 Summer 2024 Lecture 3: Algorithm Analysis pt. 2 <br> Nathan Brunelle <br> http://www.cs.uw.edu/332

## Running Time Analysis

- Units of "time"
- Operations
- Whichever operations we pick
- How do we express running time?
- Function
- Domain (input): size of the input
- Range: count of operations


## Worst Case Running Time Analysis

- If an algorithm has a worst case running time of $f(n)$
- Among all possible size- $n$ inputs, the "worst" one will do $f(n)$ "operations"
- $f(n)$ gives the maximum count of operations needed from among all inputs of size $n$


## Analysis Process From 123/143

- Count the number of "primitive chosen operations"
- +, -, compare, arr[i], arr.length, etc.
- Select the operation(s) which:
- Is/are done the most
- Is/are the most "expensive"
- Is/are the most "important"
- Write that count as an expression using $n$ (the input size)
- Put that expression into a "bucket" by ignoring constants and "nondominant" terms, then put a $O$ () around it.
- $4 n^{2}+8 n-10$ ends up as $O\left(n^{2}\right)$
- $\frac{1}{2} n+80$ ends up as $O(n)$


## Searching in a Sorted List

| 5 | 8 | 13 | 42 | 75 | 79 | 88 | 90 | 95 | 99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

public static boolean contains(List<Integer> a, int k)\{


## Faster way?

| 5 | 8 | 13 | 42 | 75 | 79 | 88 | 90 | 95 | 99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Can you think of a faster algorithm to solve this problem?

## Binary Search

| 5 | 8 | 13 | 42 | 75 | 79 | 88 | 90 | 95 | 99 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

public static boolean contains(List<Integer> a, int k)\{
int start = 0;
int end = assize();
while(start < end) $\{$
int mid = start + (end-start)/2;
if(a.get(mid) = k) return true;
else if(a.get(mid) < k) start = mid+1; -
else
end = mid;
\}
return false;
\}

$$
2^{x}=n
$$

Why is this $\log _{2} n$ ?

- In the beginning: end-start=n
- After 1 iteration: end-start=$\frac{n}{2}$

$$
\left\{\begin{array}{l}
\cdot \text { mid-start }=(\text { start }+(\text { end -start }) / 2)-\text { start } \\
\cdot \text { end -mid }=\text { end- }(\text { start }+(\text { end -start }) / 2)
\end{array}\right.
$$

$\rightarrow$ Each iteration cuts the "gap" in half!

- We stop when the gap is 1

$$
n, \frac{n}{2}, \frac{n}{4}, \frac{n}{8}, \ldots, \frac{n}{2 i}
$$

## Comparing



## Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
- Algorithm A's worst case running time is $10 n+900=1000$
- Algorithm B's worst case running time is $\frac{100 n-50}{100 n}=950$
- Algorithm C's worst case running time is $\frac{n^{2}}{100}=$
- Which algorithm is best?



## Asymptotic Notation

- $O(g(n))$
- The set of functions with asymptotic behavior less than or equal to $g(n)$
- Upper-bounded by a constant times $g$ for large enough values $n$
- $f \in O(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0 .} f(n) \leq c \cdot g(n)$
- $\overline{\Omega(g(n))} \uparrow \uparrow \uparrow$
- the set of functions with asymptotic behavior greater than or equal to $g(n)$
- Lower-bounded by a constant times $g$ for large enough values $n$
- $f \in \Omega(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0} \cdot f(n) \geq c \cdot g(n)$
- $\Theta(g(n))$
- "Tightly" within constant of $g$ for large $n$
- $\Omega(g(n)) \cap O(g(n))$

Idea of $\Theta$

- $x=y$
- $x \leq y \wedge x \geq y$


## Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n>n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof:

$$
\begin{gathered}
c=10 \\
n_{\mathbf{0}}=\mathbf{1} \\
\mathbf{1 0 n}+\mathbf{1 0 0} \leq c \cdot n^{2} \\
\mathbf{1 0 n}+\mathbf{1 0 0} \leq \mathbf{1 0 n} n^{2} \\
\mathbf{0} \leq \mathbf{1 0 n} \mathbf{n} \mathbf{1 0} \boldsymbol{n}-\mathbf{1 0 0} \\
\mathbf{0} \leq \mathbf{1 0}\left(\boldsymbol{n}^{\mathbf{2}}-\boldsymbol{n}-\mathbf{1 0}\right) \\
\mathbf{0} \leq \boldsymbol{n}^{2}-\boldsymbol{n}-\mathbf{1 0} \leq \boldsymbol{n}^{2}
\end{gathered}
$$

## Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof: Let $c=10$ and $n_{0}=6$. Show $\forall n \geq 6.10 n+100 \leq 10 n^{2}$

$$
\begin{aligned}
& 10 n+100 \leq 10 n^{2} \\
\equiv & n+10 \leq n^{2} \\
\equiv & 10 \leq n^{2}-n \\
\equiv & 10 \leq n(n-1)
\end{aligned}
$$

This is True because $n(n-1)$ is strictly increasing and $6(6-1)>10$

## Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof:
- $c=$
- $n_{0}=$


## Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof: let $c=12$ and $n_{0}=50$. Show $\forall n \geq 50.13 n^{2}-50 n \geq 12 n^{2}$

$$
\begin{aligned}
& 13 n^{2}-50 n \geq 12 n^{2} \\
\equiv & n^{2}-50 n \geq 0 \\
\equiv & n^{2} \geq 50 n \\
\equiv & n \geq 50
\end{aligned}
$$

This is certainly true $\forall n \geq 50$.

## Asymptotic Notation Example

- Show: $n^{2} \notin O(n)$
- Want to show that there does not exist a pair of $c$ and $n_{0}$ such that $\forall n_{0}>n . n^{2} \leq c \cdot n$
- No matter what value of $c$ we choose, eventually $n^{2}>c \cdot n$
- Find a value of $n$ such that $n^{2}>c \cdot n$ that we define in terms of $c$
- $n^{2}>c \cdot n$
- $n>c$
- No pair of $c$ and $n_{0}$ exists, because the inequality fails whenever $n>c$


## Asymptotic Notation Example

- To Show: $n^{2} \notin O(n)$


## Proof by

Contradiction!

- Technique: Contradiction
- Proof: Assume $n^{2} \in O(n)$. Then $\exists c, n_{0}>0$ s.t. $\forall n>n_{0}, n^{2} \leq c n$

Let us derive constant $c$. For all $n>n_{0}>0$, we know:
$c n \geq n^{2}$,
$c \geq n$.
Since $c$ is lower bounded by $n, c$ cannot be a constant and make this
True.
Contradiction. Therefore $n^{2} \notin O(n)$.

## Gaining Intuition

- When doing asymptotic analysis of functions:
- If multiple expressions are added together, ignore all but the "biggest"
- If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n)+g(n) \in \Theta(f(n))$
- Ignore all multiplicative constants
- $f(n)+c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
- Ignore bases of logarithms
- Do NOT ignore:
- Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
- Logarithms themselves
- Examples:
- $4 n+5$
- $0.5 n \log n+2 n+7$
- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$


## More Examples

- Is each of the following True or False?
- $4+3 n \in O(n)$
- $n+2 \log n \in O(\log n)$
- $\log n+2 \in O(1)$
- $n^{50} \in O\left(1.1^{n}\right)$
- $3^{n} \in \Theta\left(2^{n}\right)$


## Common Categories

- O(1) "constant"
- $O(\log n)$ "logarithmic"
- $O(n)$ "linear"
- $O(n \log n)$ "log-linear"
- $O\left(n^{2}\right)$ "quadratic"
- $O\left(n^{3}\right) \quad$ "cubic"
- $O\left(n^{k}\right)$ "polynomial"
- $O\left(k^{n}\right)$ "exponential"


## Defining your running time function

- Worst-case complexity:
- max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
- min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
- avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
- max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M ).


## Beware!

- Worst case, Best case, amortized are ways to select a function
- $O, \Omega, \Theta$ are ways to compare functions
- You can mix and match!
- The following statements totally make sense!
- The worst case running time of my algorithm is $\Omega\left(n^{3}\right)$
- The best case running time of my algorithm is $O(n)$
- The best case running time of my algorithm is $\Theta\left(2^{n}\right)$

