CSE 332 Summer 2024 Lecture 3: Algorithm Analysis pt.2

Nathan Brunelle

http://www.cs.uw.edu/332

Running Time Analysis

- Units of "time"
- How do we express running time?

Worst Case Running Time Analysis

- If an algorithm has a worst case **running time** of f(n)
 - Among all possible size-n inputs, the "worst" one will do f(n) "operations"
 - f(n) gives the maximum count of **operations** needed from among all inputs of size n

Analysis Process From 123/143

- Count the number of "primitive chosen operations"
 - +, -, compare, arr[i], arr.length, etc.
 - Select the operation(s) which:
 - Is/are done the most
 - Is/are the most "expensive"
 - Is/are the most "important"
- Write that count as an expression using *n* (the input size)
- Put that expression into a "bucket" by ignoring constants and "nondominant" terms, then put a O() around it.
 - $4n^2 + 8n 10$ ends up as $O(n^2)$
 - $\frac{1}{2}n + 80$ ends up as O(n)


```
public static boolean contains(List<Integer> a, int k){
for(int i=0; i< a.size(); i++){
    if (a.get(i) == k)
        return true;
}
return false;</pre>
```

Faster way?

Can you think of a faster algorithm to solve this problem?

Binary Search

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

```
public static boolean contains(List<Integer> a, int k){
int start = 0;
int end = a.size();
while(start < end){</pre>
    int mid = start + (end-start)/2;
    if(a.get(mid) == k)
        return true;
    else if(a.get(mid) < k)</pre>
        start = mid+1;
    else
        end = mid;
}
```

```
return false;
```

}

Why is this $\log_2 n$?

- In the beginning: end-start=n
- After 1 iteration: end-start= $\frac{n}{2}$
 - mid-start = (start+(end-start)/2)-start
 - end-mid = end-(start+(end-start)/2)
- Each iteration cuts the "gap" in half!
- We stop when the gap is 1

Comparing

Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
 - Algorithm A's worst case running time is 10n + 900
 - Algorithm B's worst case running time is 100n 50
 - Algorithm C's worst case running time is $\frac{n^2}{100}$
- Which algorithm is best?

Asymptotic Notation

- O(g(n))
 - The set of functions with asymptotic behavior less than or equal to g(n)
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0, \exists n_0 > 0, \forall n \ge n_0, f(n) \le c \cdot g(n)$
- $\Omega(g(n))$
 - the set of functions with asymptotic behavior greater than or equal to g(n)
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0, \exists n_0 > 0, \forall n \ge n_0, f(n) \ge c \cdot g(n)$
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$

- Show: $10n + 100 \in O(n^2)$
 - Technique: find values c > 0 and $n_0 > 0$ such that $\forall n > n_0$. $10n + 100 \le c \cdot n^2$
 - Proof:

- Show: $10n + 100 \in O(n^2)$
 - Technique: find values c > 0 and $n_0 > 0$ such that $\forall n \ge n_0$. $10n + 100 \le c \cdot n^2$
 - **Proof:** Let c = 10 and $n_0 = 6$. Show $\forall n \ge 6.10n + 100 \le 10n^2$
 - $10n + 100 < 10n^2$ $\equiv n + 10 < n^2$ $\equiv 10 \leq n^2 - n$ $\equiv 10 \le n(n-1)$

This is True because n(n-1) is strictly increasing and 6(6-1) > 10

- Show: $13n^2 50n \in \Omega(n^2)$
 - Technique: find values c > 0 and $n_0 > 0$ such that $\forall n \ge n_0$. $13n^2 50n \ge c \cdot n^2$
 - Proof:

- Show: $13n^2 50n \in \Omega(n^2)$
 - Technique: find values c > 0 and $n_0 > 0$ such that $\forall n \ge n_0$. $13n^2 50n \ge c \cdot n^2$
 - **Proof:** let c = 12 and $n_0 = 50$. Show $\forall n \ge 50.13n^2 50n \ge 12n^2$ $13n^2 - 50n \ge 12n^2$ $\equiv n^2 - 50n \ge 0$ $\equiv n^2 \ge 50n$ $\equiv n \ge 50$ This is certainly true $\forall n \ge 50$.

• Show: $n^2 \notin O(n)$

- To Show: $n^2 \notin O(n)$
 - Technique: Contradiction
 - **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s.t. $\forall n > n_0, n^2 \le cn$ Let us derive constant c. For all $n > n_0 > 0$, we know: $cn \ge n^2$, $c \ge n$.

Since *c* is lower bounded by *n*, *c* cannot be a constant and make this True. Contradiction. Therefore $n^2 \notin O(n)$.

Proof by Contradiction!

Gaining Intuition

- When doing asymptotic analysis of functions:
 - If multiple expressions are added together, ignore all but the "biggest"
 - If f(n) grows asymptotically faster than g(n), then $f(n) + g(n) \in \Theta(f(n))$
 - Ignore all multiplicative constants
 - $f(n) + c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
 - Ignore bases of logarithms
 - Do NOT ignore:
 - Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 - Logarithms themselves
- Examples:
 - 4n + 5
 - $0.5n\log n + 2n + 7$
 - $n^3 + 2^n + 3n$
 - $n\log(10n^2)$

More Examples

- Is each of the following True or False?
 - $4 + 3n \in O(n)$
 - $n + 2 \log n \in O(\log n)$
 - $\log n + 2 \in O(1)$
 - $n^{50} \in O(1.1^n)$
 - $3^n \in \Theta(2^n)$

Common Categories

- *O*(1) "constant"
- $O(\log n)$ "logarithmic"
- O(n) "linear"
- $O(n \log n)$ "log-linear"
- $O(n^2)$ "quadratic"
- $O(n^3)$ "cubic"
- $O(n^k)$ "polynomial"
- $O(k^n)$ "exponential"

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
 - min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

- Worst case, Best case, amortized are ways to select a function
- O, Ω , Θ are ways to compare functions
- You can mix and match!
- The following statements totally make sense!
 - The worst case running time of my algorithm is $\Omega(n^3)$
 - The best case running time of my algorithm is O(n)
 - The best case running time of my algorithm is $\Theta(2^n)$