CSE 332 Summer 2024
Lecture 3: Algorithm Analysis pt.2

Nathan Brunelle

http://www.cs.uw.edu/332
Running Time Analysis

• Units of “time”
• How do we express running time?
Worst Case Running Time Analysis

• If an algorithm has a worst case running time of $f(n)$
 • Among all possible size-n inputs, the “worst” one will do $f(n)$ “operations”
 • $f(n)$ gives the maximum count of operations needed from among all inputs of size n
Analysis Process From 123/143

• Count the number of “primitive chosen operations”
 • +, -, compare, arr[i], arr.length, etc.
 • Select the operation(s) which:
 • Is/are done the most
 • Is/are the most “expensive”
 • Is/are the most “important”

• Write that count as an expression using n (the input size)

• Put that expression into a “bucket” by ignoring constants and “non-dominant” terms, then put a $O(\)$ around it.
 • $4n^2 + 8n - 10$ ends up as $O(n^2)$
 • $\frac{1}{2}n + 80$ ends up as $O(n)$
public static boolean contains(List<Integer> a, int k){
 for(int i=0; i< a.size(); i++){
 if (a.get(i) == k)
 return true;
 }
 return false;
}
Faster way?

Can you think of a faster algorithm to solve this problem?
Binary Search

public static boolean contains(List<Integer> a, int k){
 int start = 0;
 int end = a.size();
 while(start < end){
 int mid = start + (end-start)/2;
 if(a.get(mid) == k)
 return true;
 else if(a.get(mid) < k)
 start = mid+1;
 else
 end = mid;
 }
 return false;
}
Why is this $\log_2 n$?

- In the beginning: end - start = n
- After 1 iteration: end - start = $\frac{n}{2}$
 - mid - start = (start + (end - start)/2) - start
 - end - mid = end - (start + (end - start)/2)
- Each iteration cuts the “gap” in half!
- We stop when the gap is 1
Comparing

![Diagram showing comparison between binary and linear methods.](image-url)
Comparing Running Times

• Suppose I have these algorithms, all of which have the same input/output behavior:
 • Algorithm A’s worst case running time is $10n + 900$
 • Algorithm B’s worst case running time is $100n - 50$
 • Algorithm C’s worst case running time is $\frac{n^2}{100}$

• Which algorithm is best?
\[f(n) = O(g(n)) \]
\[f(n) = \Theta(g(n)) \]
\[f(n) = \Omega(g(n)) \]
Asymptotic Notation

- $O(g(n))$
 - The **set of functions** with asymptotic behavior less than or equal to $g(n)$
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \leq c \cdot g(n)$

- $\Omega(g(n))$
 - the **set of functions** with asymptotic behavior greater than or equal to $g(n)$
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \geq c \cdot g(n)$

- $\Theta(g(n))$
 - “**Tightly**” within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$
Asymptotic Notation Example

• Show: $10n + 100 \in O(n^2)$
 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n > n_0. 10n + 100 \leq c \cdot n^2$
 • **Proof:**
Asymptotic Notation Example

• Show: $10n + 100 \in O(n^2)$

 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0.\ 10n + 100 \leq c \cdot n^2$

 • **Proof:** Let $c = 10$ and $n_0 = 6$. Show $\forall n \geq 6.\ 10n + 100 \leq 10n^2$

 $10n + 100 \leq 10n^2$

 $\equiv n + 10 \leq n^2$

 $\equiv 10 \leq n^2 - n$

 $\equiv 10 \leq n(n - 1)$

 This is True because $n(n - 1)$ is strictly increasing and $6(6 - 1) > 10$
Asymptotic Notation Example

• Show: $13n^2 - 50n \in \Omega(n^2)$
 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. 13n^2 - 50n \geq c \cdot n^2$
 • **Proof:**
Asymptotic Notation Example

• **Show:** $13n^2 - 50n \in \Omega(n^2)$

 • **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0.\ 13n^2 - 50n \geq c \cdot n^2$

 • **Proof:** let $c = 12$ and $n_0 = 50$. Show $\forall n \geq 50.\ 13n^2 - 50n \geq 12n^2$

 $13n^2 - 50n \geq 12n^2$

 $\equiv n^2 - 50n \geq 0$

 $\equiv n^2 \geq 50n$

 $\equiv n \geq 50$

 This is certainly true $\forall n \geq 50$.
Asymptotic Notation Example

• Show: $n^2 \notin O(n)$
Asymptotic Notation Example

• To Show: $n^2 \notin O(n)$

 • **Technique: Contradiction**

 • **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s.t. $\forall n > n_0, n^2 \leq cn$

 Let us derive constant c. For all $n > n_0 > 0$, we know:

 \[cn \geq n^2, \]
 \[c \geq n. \]

 Since c is lower bounded by n, c cannot be a constant and make this True.

 Contradiction. Therefore $n^2 \notin O(n)$.

Proof by Contradiction!
Gaining Intuition

• When doing asymptotic analysis of functions:
 • If multiple expressions are added together, ignore all but the “biggest”
 • If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n) + g(n) \in \Theta(f(n))$
 • Ignore all multiplicative constants
 • $f(n) + c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
 • Ignore bases of logarithms
 • Do NOT ignore:
 • Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 • Logarithms themselves

• Examples:
 • $4n + 5$
 • $0.5n\log n + 2n + 7$
 • $n^3 + 2^n + 3n$
 • $n\log(10n^2)$
More Examples

• Is each of the following True or False?
 • $4 + 3n \in O(n)$
 • $n + 2 \log n \in O(\log n)$
 • $\log n + 2 \in O(1)$
 • $n^{50} \in O(1.1^n)$
 • $3^n \in \Theta(2^n)$
Common Categories

- $O(1)$ “constant”
- $O(\log n)$ “logarithmic”
- $O(n)$ “linear”
- $O(n \log n)$ “log-linear”
- $O(n^2)$ “quadratic”
- $O(n^3)$ “cubic”
- $O(n^k)$ “polynomial”
- $O(k^n)$ “exponential”
Defining your running time function

• Worst-case complexity:
 • max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
 • min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
 • avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
 • max total number of steps algorithm takes on M “most challenging” consecutive inputs, divided by M (i.e., divide the max total sum by M).
Beware!

• Worst case, Best case, amortized are ways to select a function
• O, Ω, Θ are ways to compare functions
• You can mix and match!
• The following statements totally make sense!
 • The worst case running time of my algorithm is $\Omega(n^3)$
 • The best case running time of my algorithm is $O(n)$
 • The best case running time of my algorithm is $\Theta(2^n)$