CSE 332 Summer 2024 Lecture 23: P & NP

Nathan Brunelle

http://www.cs.uw.edu/332

Tractability

- Tractable:
 - Feasible to solve in the "real world"
- Intractable:
 - Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
 - For machine learning, big data, etc. tractable might mean O(n) or even $O(\log n)$
 - For most applications it's more like $O(n^3)$ or $O(n^2)$
- A strange pattern:
 - Most "natural" problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 - It's rare to have problems which require a running time of n^5 , for example

Complexity Classes and Tractability

- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class *P*:
 - Stands for "Polynomial"
 - The set of problems which have an algorithm whose running time is O(n^p) for some choice of p ∈ ℝ.
 - We say all problems belonging to P are "Tractable"
- Complexity Class *EXP*:
 - Stands for "Exponential"
 - The set of problems which have an algorithm whose running time is $O(2^{n^p})$ for some choice of $p \in \mathbb{R}$
 - We say all problems belonging to EXP P are "Intractable"
 - Disclaimer: Really it's all problems outside of *P*, and there are problems which do not belong to *EXP*, but we're not going to worry about those in this class

Important!

- *NP*
 - The set of problems for which a candidate solution can be verified in polynomial time
 - Stands for "Non-deterministic Polynomial"
 - Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 - Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search

PCNP

Way Cool!

S is an independent set of G iff V - S is a vertex cover of G

S is an independent set of G iff V - S is a vertex cover of G

Independent Set

Solving Vertex Cover and Independent Set

- Algorithm to solve vertex cover
 - Input: G = (V, E) and a number k_{f}
 - Output: True if G has a vertex cover of size k
 - Check if there is an Independent Set of G of size |V| k
- Algorithm to solve independent set
 - Input: G = (V, E) and a number k
 - Output: True if G has an independent set of size k
 - Check if there is a Vertex Cover of G of size |V| k

Either both problems belong to *P*, or else neither does!

We need to build this Reduction

Reductions Shows how two different problems relate to each other

MacGyver's Reduction

NP-Complete

- A set of "together they stand, together they fall" problems
- The problems in this set either all belong to P, or none of them do
- Intuitively, the "hardest" problems in NP
- Collection of problems from *NP* that can all be "transformed" into each other in polynomial time
 - Like we could transform independent set to vertex cover, and vice-versa
 - We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...

$EXP \supset NP - Complete \supseteq NP \supseteq P$

NP-Hard

- How can we try to figure out if P=NP?
- Identify problems at least as "hard" as NP
 - If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.
- Definition: NP-Hard:
 - *B* is NP-Hard provided EVERY problem within NP reduces to *B* in polynomial time

NP-Hard Idea

For every NP problem

- "Together they stand, together they fall"
- Problems solvable in polynomial time iff ALL NP problems are
- NP-Complete = NP \cap NP-Hard
- How to show a problem is NP-Complete?
 - Show it belongs to NP
 - Give a polynomial time verifier
 - Show it is NP-Hard
 - Give a reduction from another NP-H problem

EXH

NP

~ Complete

NP-Completeness

Overview

- Problems not belonging to *P* are considered intractable
- The problems within *NP* have some properties that make them seem like they might be tractable, but we've been unsuccessful with finding polynomial time algorithms for many
- The class *NP Complete* contains problems with the properties:
 - All members are also members of NP
 - All members of NP can be transformed into every member of NP Complete
 - Because they are both NP and NP Hard
 - If any one member of NP Complete belongs to P, then P = NP
 - If any one member of NP Complete is outside of P, then $P \neq NP$

Why should YOU care?

- If you can find a polynomial time algorithm for any *NP Complete* problem then:
 - You will win \$1million
 - You will win a Turing Award
 - You will be world famous
 - You will have done something that no one else on Earth has been able to do in spite of the above!
- If you are told to write an algorithm a problem that is *NP Complete*
 - You can tell that person everything above to set expectations
 - Change the requirements!
 - Approximate the solution: Instead of finding a path that visits every node, find a path that visits at least 75% of the nodes
 - Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
 - Use Heuristics: Write an algorithm that's "good enough" for small inputs, ignore edge cases

Why should YOU care?

- The entire field of cryptography relies on it (nearly at least)
 - Requires decrypting with a key is easier than decrypting without a key
 - This is strongly related to requiring a difference in difficulty between verifying a candidate solution and finding a solution in the first place
- If $P \neq NP$
 - Some problems remain intractable
 - Cryptography persists
- If P = NP
 - We may get efficient solutions for important problems
 - Cryptography is potentially doomed.

Does P=NP?

https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper3.pdf

When Will P=NP be resolved?

	02–09	10–19	20-29	30–39	40–49	5 0– 5 9	60–69	70–79
2002	2 5 (5%)	12 (12%)	13 (13%)	10 (10%)	5(5%)	12(12%)	4 (4%)	0 (0%)
2012	$2 \mid 0 \; (0\%)$	2(1%)	17 (11%)	18 (12%)	5(3%)	10~(6.5%)	10~(6.5%)	9(6%)
2019	0 (0%)	0 (0%)	26 (22%)	20 (17%)	14 (12%)	9(7%)	7(6%)	5(4%)

	80-89	90–99	100-109	110-119	150 - 159	2200-3000	4000-4100
2002	1 (1%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	5(5%)	0 (0%)
2012	4 (3%)	5(3%)	2(1.2%)	5(3%)	2(1.2%)	3(2%)	3(2%)
2019	0 (0%)	0 (0%)	1 (0.8%)	10~(12%)	10~(12%)	1 (0.8%)	11 (9%)

\cap		Long Time	Never	Don't Know	Sooner than 2100	Later than 2100
	2002	0 (0%)	5(5%)	21 (21%)	62~(62%)	17 (17%)
1	2012	22~(14%)	5(3%)	8 (5%)	81~(53%)	63~(41%)
	2019	7~(6%)	11 (9%)	0 (0%)	84~(66%)	40 (34%)

Notable Statements on P vs NP

Scott Aaronson I believe $P \neq NP$ on basically the same grounds that I think I won't be devoured tomorrow by a 500-foot-tall robotic marmoset from Venus, despite my lack of proof in both cases.

Suggested rephrased question:

will humans manage to prove $P \neq NP$ before they either kill themselves out or are transcended by superintelligent cyborgs? And if the latter, will the cyborgs be able to prove $P \neq NP$?

Neil Immerman $P \neq NP$ will be resolved somewhere between 2017 and 2034, using some combination of logic, algebra, and combinatorics.

Donald Knuth: (Retired from Stanford) It will be solved by either 2048 or 4096. I am currently somewhat pessimistic. The outcome will be the truly worst case scenario: namely that someone will prove "P=NP because there are only finitely many obstructions to the opposite hypothesis"; hence there will exists a polynomial time solution to SAT but we will never know its complexity!