CSE 332 Autumn 2023
Lecture 20: ForkJoin

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

A Programming Assumption Reconsidered

 So far:
* Programs run by executing one line of code at a time in the order written
e Called Sequential Programming

* Removing this assumptions creates challenges and opportunities

* Programming: Divide computation across several parallel threads then
coordinate (synchronize) across them.

* Algorithms: This parallel processing can speed up computation by increasing
> throughput (operations done per unit time)

e Data Structures: May need to support concurrent access (multiple parallel
processes attempting to use it at once)

Why Parallelism?

* Pre 2005: (%

* Processors “naturally” got faster at an exponential rate (~2x faster every ~2
VW/J — T

* Since %005:

* Some components cannot be improved in the same way due to limitations of

physics-

. Solu/tion: increase computing speed by just adding more processors

e ——

What to do with the extra processors?
g

* Time Slicing:
——*Yourcomputer is always keeping track of multiple things at once
* running the OS, %the display, running Powerpoint, autosaving a document, etc.

* Multipl rs allow for the multiple_tasks to be spread across them, so
each processor dedicates more time to each one

 Parallelism (our focus):

——

* Multiple processors collaborate on the same task.

- —

Parallelism Vs. Concurrency (with Potatoes)
N~—

e Sequential:
* The task is completed by just one processor doing one thing at a time
* There is one cook who peels all the potatoes
—

* Parallelism:
* One task being completed by may threads
* Recruit several cooks to peel a lot of potatoes faster

_—

* Concurrency:
=oneur

* Parallel tasks using a shared resource

» Several cooks are making their own recipes, but there is only 1 oven
-

—_—

New Story of Code Execution

* Old Story:
Uld Stor

* One program counter (current statement executing)
* One call stack (with each stack frame holding local variables) Q‘/

* Objects in the heap created by WM (i.e., new)
 (nothing to do with data structure called a heap)

* New Story:

* Collection of threads each with its own:
* Program Counter
\
e (Call Stack
* Local Variables
» References to objects in a shared heap

\/

Old Story

Heap Containing Objects and

Call Stack tatic Fields

Program Cynter
Local Variables (primitives and

references to Heap objects)

New Story

Heap Containing Objects and

, tatic Fields

,

Threads, each with its own unshared:
Call Stack
Program Counter
| ocal Variables (primitives and references
. \
— to Heap objects)

L

/

Needs from Our Programming Language

* A way to create multiple things running at once
* Threads I —
* Ways to share memory

A |
* References to common objects
\ S——

* Ways for threads to synchronize

mwjmmb—to finish their work

Parallelism Example (not real code)

* Goal: Find the s_&of an array

* Idea: 4 processors will 'each find the
sum o%?me quarter of the array, then
one quar

we can add up those 4 results int sum(int[] arr){
= res = new int[4];

len = arr.length; S—~
ﬁé)RALL(hO; i<4;i++){ //parallel iterations
res[i] = sumRange(arr,i*len/4,(i+1)*len/4); }
turn res[O]+res[1]+res[2]Fres[3 —

} S

—_—

int sumRange(int[] arr, int lo, int hi) {

Note: This FORALL construct does not exist, result = 0;
but it’s similar to how we’ll actually do it. for(j=lo; j < hi; j++)

result += arr[j]; return result;

Java.lang.Threagd

* To run a new thread: o
1. Define a subclass C of java.lang.Thread, overriding rug/
2. Create an object of class C

3. Call that object’s start method
 start sets off a new thread, usin% run Fs its “main”

 Calling run directly causes the program to execute run sequentially

Back to Summing an Array

e Goal: Find the sum of an array
* |dea: 4 threads each find the sum of one quarter of the array

- S—_

* Process:
* Create 4 thread objects, each given a portion of the work
+ Call start() on each thread object to rumﬁﬁllel
- Wait for threads to finish using:join() |

* Add together their 4 answers for the final result
—

First Attempt (part 1, defining Thread Object)

@Qu./mT_hreNadex-tends Ja\{a.lan ..Thread {
int lo; //fields, assigned in the constructor

int hi; // so threads know what to do.
int[] arr;

~
int ans = 0; // result
ans =0; // (.

SumThread(int[] a, int |, int h) {
lo=I; hi=h; arr=a;

}

public void run() { //override must have this type

for(int i=lo; i < hi; i++) 6—»

ans += arr|i];

First Attempt (part 2, Creating Thread Objects)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int |, inth) { ... }
public void run(){ ... } // override }

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans =0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations
ts[i] = new(SumThread(arr,i*Ien/4,(i+1)*|en/4);
for(int i=0; i < 4; i++) // combine results- /

ans += ts[i].ans; %\

return ans;

First Attempt (part 3, Running Thread Objects)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int |, inth) {...}
public void run(){ ... } // override }

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans =0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){ // do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
s[i].start(); // start not run}
for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans; }

First Attempt (part 4, Synchronizing)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int |, inth) {...}
public void run(){ ... } // override }
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){ // do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // start not run}
for(int i=0; i < 4; i++) // combine results
ts[i].join(); // wait for thread to finish! «L
ans += ts[i].ans;
return ans; }

Jc_)_in

e Causes program to pause until the other thread completes its run
method

* Avoids a race condition
* Without join the other thread’sg field may not have its final answer yet

o P

Flaws With this Attempt

int sum(int[] arr, int nust){%n be a static method
int len = arr.length;

Different machines have different numbers
of processors!

Making the thread count a parameter
helps make your program more efficient
and reusable across computers

int ans = 0;
SumThread[] ts=-new SumThread@
for(int i=0; i @; i++){ // do parallel computations

ts[i] = new SumThread(arr,i*len/numTs,(i+1)*len/numTs);

ts[i].start(); // start not run}

for(int i=0; i < numTs; i++) // combine results
ts[i].join(); // wait for thread to finish!
ans += ts[i].ans;

return ans; }

Flaws With this Attem% /:7 0/

* Even If we make the number of threads equal the number\o_f/\/\/
processors, the OS is doing time slicing, so we might not have all

processors available right now —

* For some problems, not all subproblems will take the same amount of
time:
* E.g. determining whether all integers in an array are prime.

—

One Potential Sqution:Nore Threads!

_/

* |dentify an ‘optimal” workload per thread
e E.g. maybg it’s not vm)llttmg the work if the array is shorter than 1000

* Split the array into chunks using this “sequential Cutoff”
e numTs = len/SEQ_CUTOFF; -

* Problem: One process is still responsible for summing all len %
results

[O D

b~

e |
A Better Solutlon.LDlv/mIe and Conq\ue_r).

* Idea: Each thread checks its problem size. If its smaller than the

sequential cutoff, it will sum everything sequentially. Otherwise it will

split the problem in half across two separate threads.
v/
’_\

Merge Sort

* Base Case:
e [Fthe list is of length 1 or O, it’s already sorted, so just return it

211914 1| Divide:

 Split the list into two “sublists” of (roughly) equal length

8 11419 W

* Sort both lists recursively

e Combine:

* Merge sorted sublists into one sorted list

22

Parallel Sum
c * Base Case:
* |f the list’s length is smaller than the Sequential Cutoff, find the sum
sequentially

5 2
500 * Divide:
 Split the list into two “sublists” of (roughly) equal length, create a

thread tosumreach sublist.
—_—

o]4f1

* Conquer:
 Call start() for each thread

. Cwine;
* Sum together the answers from each thread

23

Divide and Conquer with Threads

class SumThread extends java.lang.Thread {
public void run(){ // override

if(ﬁi lo < SEQUENTIAL_CUTOFF) // “base case”
for(int i=lo; i < hi; i++) ans += arr][i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2); // divide
SumThread right= new SumThread(arr,(hi+lo)/2,hi); // divide
left.start(); // conquer
right.start(); // conquer

——=>\left.join(); // don’t move this up a line — why?

right.join();
ans = left.ans + right.ans; // combine

} — e

}

int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans; }

Small optimization

* Instead of calling two separate threads for the two subproblems,
create one parallel thread (using start) and one sequential thread

(using run) ﬁL\ ‘. b
e RN =
(D

Divide and Conquer with Threads (optimized)

class SumThread extends java.lang.Thread {
public void run(){ // override

if(hi — lo < SEQUENTIAL_CUTOFF) // “base case”
for(int i=lo; i < hi; i++) ans += arr][i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2); // divide
SumThread right= new SumThread(arr,(hi+lo)/2,hi); // divide
left.start(); // conquer

ight.run(); // conquer
%eft.j%(_);// don’t move this up a line — why?

//right.join();
M + right.ans; // combine

}

int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans; }

ForkJoin Framework

* This strategy is common enough that Java (and C++, and C#, and...)

What to instead in ForkJoin

provides a library to do it for you!

What you would do in Threads

Subclass Thread — =
Override run —_— S>>
Store the answer in a field —_ ~~

—

Call start
join synchronizes only
Call run to execute sequentially

Have a topmost thread and call run

Subclass RecursiveTask<V>

Override compute

Return a V from compute

Call fork—

join synchronizes and returns the answer
Call compute to execute sequentially

Create a pool and call invoke

Divide and Conqguer with ForkJoin

class SumTask extends RecursiveTask {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int |, inth) {...}
protected Integer compute(){// return answer
if(hi — lo < SEQUENTIAL_CUTOFF) { // base case
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++) {
ans += arr[i]; return ans; }
else {
SumTask left = new SumTask(arr,lo,(hi+lo)/2); // divide
SumTask right= new SumTask(arr,(hi+lo)/2,hi); // divide
left.fork(); // fork a thread and calls compute (conquer)
int rightAns = right.compute(); //call compute directly (conquer)
int leftAns = left.join(); // get result from left
return leftAns + rightAns; // combine

Divide and Conquer with ForkJoin (continued)

static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){
SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task); // invoke returns the value compute returns

Section Tomorrow

* Working with examples of ForkJoin

* Make sure to bring your laptops!
* And charge it!

	Slide 1: CSE 332 Autumn 2023 Lecture 20: ForkJoin
	Slide 2: A Programming Assumption Reconsidered
	Slide 3: Why Parallelism?
	Slide 4: What to do with the extra processors?
	Slide 5: Parallelism Vs. Concurrency (with Potatoes)
	Slide 6: New Story of Code Execution
	Slide 7: Old Story
	Slide 8: New Story
	Slide 9: Needs from Our Programming Language
	Slide 10: Parallelism Example (not real code)
	Slide 11: Java.lang.Thread
	Slide 12: Back to Summing an Array
	Slide 13: First Attempt (part 1, defining Thread Object)
	Slide 14: First Attempt (part 2, Creating Thread Objects)
	Slide 15: First Attempt (part 3, Running Thread Objects)
	Slide 16: First Attempt (part 4, Synchronizing)
	Slide 17: Join
	Slide 18: Flaws With this Attempt
	Slide 19: Flaws With this Attempt
	Slide 20: One Potential Solution: More Threads!
	Slide 21: A Better Solution: Divide and Conquer!
	Slide 22: Merge Sort
	Slide 23: Parallel Sum
	Slide 24: Divide and Conquer with Threads
	Slide 25: Small optimization
	Slide 26
	Slide 27: Divide and Conquer with Threads (optimized)
	Slide 28: ForkJoin Framework
	Slide 29: Divide and Conquer with ForkJoin
	Slide 30: Divide and Conquer with ForkJoin (continued)
	Slide 31: Section Tomorrow

