
CSE 332 Summer 2024
Lecture 1: Intro to ADTs, Stacks,

Queues
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Nathan Brunelle

• Born: Virginia Beach, VA

• Ugrad: Math and CS at University of Virginia

• Grad: CS at University of Virginia

• Taught at UVA for 6 years
• Intro to programming (e.g. 121)

• Discrete Math (e.g. 311)

• Algorithms (e.g. 412)

• Theory of Computation (e.g. 431)

Warm Up!

Put up one hand (you can switch if it gets tired)!
Set your counter to 1
While (you and at least one other person have a hand up){

Make a partnership with someone whose hand is still raised
Share your name with your partner
Add together your counter and your partner’s counter
Identify which of you woke up earliest this morning
Release partnership
If you woke up earlier, then put your hand down and return to your seat

}

About this course

Topics covered:

• Data Structures
• Specific “classic” data structures

• Introduction to Algorithms and Analysis

• Parallelism and Concurrency
• Parallelism: Use multiple processors to finish sooner

• Concurrency: Correct access to shared resources

Course Staff

• Instructor:
• Nathan Brunelle

• TAs:
• Katherine

• Charles

• Juliette

• Khushi

• Angie

Course Info

• Text (optional):
• Data Structures & Algorithm Analysis in Java, (Mark Allen Weiss), 3rd edition,

2012
(2nd edition also o.k.)

• Course Page:
• http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Communication

• Ed STEM Discussion board
• Your first stop for questions about course content & assignments

Course Meetings

• Lecture
• Materials posted (slides before class, inked slides after)
• Recorded using Panopto
• Ask questions, focus on key ideas (rarely coding details)

• Section
• Practice problems!
• Answer Java/homework questions, etc.
• Occasionally may introduce new material
• An important part of the course (not optional)

• Office hours
• Use them: please visit us!

Grading

• 13 Weekly-ish homework exercises (5% each, 65% total)
• You may resubmit 2 (one from before midterm, one from after)

• Resubmitted assignment’s grade replaces the original

• Midterm and final exam (35%, weighted equally)
• In-person

• Midterm on Friday 7/19

• Final on last day of class (8/16)

Collaboration

• Try it yourself first

• Collaborate with classmates (no external interactive help on
assignments permitted)
• Collaboration is “whiteboard only”

• Looking for a collaborator?
• Post on the Ed Discussion board

• Go to the CSE study room (Allen Center 006, there’s a table specifically for 332!)

• Cite your sources!

Terminology

• Abstract Data Type (ADT)
• Mathematical description of a “thing” with set of operations on that “thing”

• Algorithm
• A high level, language-independent description of a step-by-step process

• Data structure
• An organization of data and family of algorithms for implementing an ADT

• Implementation of a data structure
• The data organization and algorithms written in a programming language

ADT: Queue

• What is it?

• What operations do we need?

• Suggested data structures?

ADT: Queue

• What is it?
• A collection of items that we interact with in a “First In First Out” (FIFO) way

• What operations do we need?
• Enqueue

• Add a new item to the queue

• Dequeue
• Remove the “oldest” item from the queue

• IsEmpty
• Indicate whether or not there are items still on the queue

Linked List – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” reference to the oldest item
• A “back” reference to the most recent item
• Each Node references the item enqueued after it

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

8 3 4 75front

back

Linked List – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” reference to the oldest item
• A “back” reference to the most recent item
• Each Node references the item enqueued after it

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

8 3 4 75front

back

enqueue(x){
 last = new ListNode(x);
 back.next = last;
 back = last;
}

dequeue(){
 first = front.value;
 front = front.next;
 return first
}

isEmpty(){
 return front == null;
}

4 5 6 7321 80 9

“Circular” Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue
• Actually, the first “open” slot in the array

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

74385
front=0

back=5

“Circular” Array

• Intuitively, An array of values arranged in a “circle” rather than a line
• If you go beyond the last index, to wrap back around to 0

4 5 6 7321 80 9

74385

0

1

2

3

45

6

7

8

9

5

8

3

4

7

front=0

back=5

…

…

…

…

…

4 5 6 7321 80 9

“Circular” Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

74385
front=0

back=5

enqueue(x){
 queue[back] = x;
 back = (back + 1) % queue.length;
 size++;
} dequeue(){

 first = queue[front];
 front = (front + 1) % queue.length;
 size--;
 return first;
}

isEmpty(){
 return size== 0;
}

What if we run out of space?!

4 5 6 7321 80 9

“Circular” Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

74385
front=0

back=5

enqueue(x){
 if (size == queue.length) {resize();}
 queue[back] = x;
 back = (back + 1) % queue.length;
 size++;
}

dequeue(){
 first = queue[front];
 front = (front + 1) % queue.length;
 size--;
 return first;
}isEmpty(){

 return size== 0;
}

Linked List vs. Circular Array

ADT: Stack

• What is it?

• What operations do we need?

• Suggested data structures?

ADT: Stack

• What is it?
• A “Last In First Out” (LIFO) collection of items (sometimes called FILO)

• What operations do we need?
• push

• Add a new item onto the stack

• peek
• Return the value of the most recently pushed item

• pop
• Return the value of the most recently pushed item and remove it from the stack

• isEmpty
• Indicate whether or not there are items still on the stack

	Slide 1: CSE 332 Summer 2024 Lecture 1: Intro to ADTs, Stacks, Queues
	Slide 2: Nathan Brunelle
	Slide 3: Warm Up!
	Slide 4: About this course
	Slide 5: Course Staff
	Slide 6: Course Info
	Slide 7: Communication
	Slide 8: Course Meetings
	Slide 9: Grading
	Slide 10: Collaboration
	Slide 11: Terminology
	Slide 12: ADT: Queue
	Slide 13: ADT: Queue
	Slide 14: Linked List – Queue Data Structure
	Slide 15: Linked List – Queue Data Structure
	Slide 16: “Circular” Array – Queue Data Structure
	Slide 17: “Circular” Array
	Slide 18: “Circular” Array – Queue Data Structure
	Slide 19: “Circular” Array – Queue Data Structure
	Slide 20: Linked List vs. Circular Array
	Slide 21: ADT: Stack
	Slide 22: ADT: Stack

