
CSE 332 Summer 2024
Lecture 16: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Definition: Tree

2

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Note: A tree does not need
a root, but they often do!

Definition: Tree

3

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Pick some arbitrary
root node and
rearrange tree 10

11

9

5

3

73

12

A

B

C

D

EF

G

IH

Definition: Spanning Tree

4

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that
doesn’t have any cycles is guaranteed
to be a spanning tree!

Any set of V-1 edges that connects all
the nodes in the graph is guaranteed to
be a spanning tree!

10
2

6

5

8

3

1

8

A

B

C D

E

F

G I

H

Pick some arbitrary
root node and
rearrange tree

Definition: Minimum Spanning Tree

5

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 =

𝑒∈𝐸𝑇

𝑤(𝑒)

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

6

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

7

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

8

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

9

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

10

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

11

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: Cut

12

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

13

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

14

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

15

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

16

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

17

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Kruskal’s Algorithm

18

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of
edges 𝐴 that Kruskal’s has already selected to
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
𝐹 to G using only edges in 𝐴 because 𝑒 does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

Kruskal’s Algorithm Runtime

19

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

General MST Algorithm

20

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

21

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

22

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

23

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

24

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

25

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

26

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

27

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.extract();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Dijkstra’s Algorithm

28

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int primss(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.extract();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Prims’s Algorithm

29

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.extract();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Dijkstra’s Algorithm

30

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int primss(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.extract();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Prims’s Algorithm

	Slide 1: CSE 332 Summer 2024 Lecture 16: Graphs
	Slide 2: Definition: Tree
	Slide 3: Definition: Tree
	Slide 4: Definition: Spanning Tree
	Slide 5: Definition: Minimum Spanning Tree
	Slide 6: Kruskal’s Algorithm
	Slide 7: Kruskal’s Algorithm
	Slide 8: Kruskal’s Algorithm
	Slide 9: Kruskal’s Algorithm
	Slide 10: Kruskal’s Algorithm
	Slide 11: Kruskal’s Algorithm
	Slide 12: Definition: Cut
	Slide 13: Cut Theorem
	Slide 14: Cut Theorem
	Slide 15: Cut Theorem
	Slide 16: Cut Theorem
	Slide 17: Cut Theorem
	Slide 18: Proof of Kruskal’s Algorithm
	Slide 19: Kruskal’s Algorithm Runtime
	Slide 20: General MST Algorithm
	Slide 21: Prim’s Algorithm
	Slide 22: Prim’s Algorithm
	Slide 23: Prim’s Algorithm
	Slide 24: Prim’s Algorithm
	Slide 25: Prim’s Algorithm
	Slide 26: Prim’s Algorithm
	Slide 27: Dijkstra’s Algorithm
	Slide 28: Prims’s Algorithm
	Slide 29: Dijkstra’s Algorithm
	Slide 30: Prims’s Algorithm

