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Definition: Tree

A connected graph with no cycles

Note: A tree does not need
a root, but they often do!




Definition: Tree

A connected graph with no cycles

Pick some arbitrary
root node and
rearrange tree




Definition: Spanning Tree

A Tree T = (V, Et) which connects (“spans”)
all the nodesina graph ¢ = (V,E)

3 How many edges does T have?
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doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to
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Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
all the nodes in a graph ¢ = (V, E), that has
minimal cost
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Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle
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Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle
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Definition: Cut

A Cut of graph G = (V/, E) is a partition of the
nodes into two sets, Sand V' — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut
cutifvpeSandv, eV —-3S if no edges cross the cut
(or opposite), e.g. (4, C) eg. R={(4,B),(E,G),(F,G)}



Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (S,V —S5). AU is also a subset of a minimum spanning

tree.



Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.
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Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
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crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

17



Proof of Kruskal’s Algorithm

Start with an empty tree A

Repeat V' — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Proof: Suppose we have some arbitrary set of
edges A that Kruskal’s has already selected to
include in the MST. e = (F, () is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
F to G using only edges in A because e does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:

* nodes reachable from G using edges in A

* All other nodes

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!
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Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Keep edges in a Disjoint-set
data structure (very fancy)
O(E logV)
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General MST Algorithm

Start with an empty tree A

Repeat V — 1 times:
Pick a cut (5,V — 5) which A respects (typically implicitly)
Add the min-weight edge which crosses (S,V — )

20



Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V — )

S is all endpoint of edges in
e is the min-weight edge that grows the

10 A0,
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Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

22



Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A
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Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A
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Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e
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Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A
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Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @

distances|[start] = 0;
while (IPQ.isEmpty){
current = PQ.extract(); @

done[current] = true; @

for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]
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Prims’s Algorithm

int primss(graph, start, end){
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){

current = PQ.extract(); @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]
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Prims’s Algorithm

int primss(graph, start, end){
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){

current = PQ.extract(); @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
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}
}
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