CSE 332 Summer 2024
Lecture 16: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332
Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge (v, w): $\Theta(\text{deg}(v))$
Remove Edge (v, w): $\Theta(\text{deg}(v))$
Check if Edge (v, w) Exists: $\Theta(\text{deg}(v))$
Get Neighbors (incoming): $\Theta(n + m)$
Get Neighbors (outgoing): $\Theta(\text{deg}(v))$

$|V| = n$
$|E| = m$
int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}
Find the quickest way to get from UW to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

• Input: graph with **no negative edge weights**, start node \(s \), end node \(t \)

• Behavior: Start with node \(s \), repeatedly go to the incomplete node “nearest” to \(s \), stop when

• Output:
 • Distance from start to end
 • Distance from start to every node
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [\infty, \infty, \infty, ...]; // one index per node
    done = [False, False, False, ...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.extract();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){ // if neighbor hasn’t been processed yet
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == \infty){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if (new_dist < distances[neighbor]){ // if the new distance is shorter
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```
Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
 • How many times is each node added to the priority queue?
 • At most once
 • How many times might a node’s priority be changed?
 • Indegree of that node

• What’s the running time of each priority queue operation?
 • $\log |V|$

• Overall running time:
 • $|V| \log |V| + |E| \log |V|$
 • $\Theta(|E| \log |V|)$
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have found its shortest path

• Induction over number of completed nodes

• Base Case:
 • When 1 node has been removed, its priority matches the weight of its shortest path
 • That one node is the start, it had priority 0
 • 0 is the cost of the shortest path from start to start

• Inductive Step:
 • Assume that k nodes have been removed so far
 • Assume that for all them, their priority matched their shortest path cost
 • Show that the next node that’s removed ($k + 1$) also had its priority match its shortest path cost.
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, its distance is that of the shortest path
• Induction over number of completed nodes
• Base Case: Only the start node removed
 • It is indeed 0 away from itself
• Inductive Step:
 • If we have correctly found shortest paths for the first k nodes, then when we remove node $k + 1$ we have found its shortest path
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the priority queue. What do we know about a?
 • We have a path from s to a
 • a has the lowest priority of all “incomplete” nodes, e.g. b
 • a has an edge with a already completed node
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the priority queue.
 • No other incomplete node has a shorter path discovered so far (e.g. b)

• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • Thus no path that includes b can be a shorter path to a
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • Thus no path that includes b can be a shorter path to a
 • Only because no path from b to a can have negative weight!
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, ...
 - Before moving on to the second neighbor of s, visit everything reachable from the first neighbor of s
- Output:
 - Does the graph have a cycle?
 - A **topological sort** of the graph.
DFS Recursively (more common)

```java
void dfs(graph, curr) {
    mark curr as “visited”; 
    for (v : neighbors(current)) {
        if (! v marked “visited”) {
            dfs(graph, v);
        }
    }
    mark curr as “done”; 
}
```
Topological Sort

• A Topological Sort of a directed acyclic graph $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation.
DFS Recursively

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}
DFS: Topological sort

List topSort(graph){
 List<Node> finished = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 finished.reverse();
 return finished;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 finished.add(curr)
}

Idea: List in reverse order by “done” time

finished: 9 1 2 5 8 3 4 6 7
Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!
Definition: Tree

A connected graph with no cycles

Pick some arbitrary root node and rearrange tree
Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$

How many edges does T have?
$V - 1$

Any set of $V-1$ edges in the graph that doesn’t have any cycles is guaranteed to be a spanning tree!

Any set of $V-1$ edges that connects all the nodes in the graph is guaranteed to be a spanning tree!
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost.

$$Cost(T) = \sum_{e \in E_T} w(e)$$
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C).

A set of edges R Respects a cut if no edges cross the cut, e.g. $R = \{(A, B), (E, G), (F, G)\}$.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree \(A \)
Repeat \(V - 1 \) times:
 Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges \(A \) that Kruskal’s has already selected to include in the MST. \(e = (F,G) \) is the edge Kruskal’s selects to add next

We know that there cannot exist a path from \(F \) to \(G \) using only edges in \(A \) because \(e \) does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:
- nodes reachable from \(G \) using edges in \(A \)
- All other nodes

\(e \) is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)

$O(E \log V)$
General MST Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects (typically implicitly)

Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects

Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A

e is the min-weight edge that grows the tree
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap

$O(E \log V)$
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist,neighbor);
                }
                if (new_dist < distances[neighbor]){  
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist,neighbor);  }
            }
        }
    }
    return distances[end]
}
```
Prims's Algorithm

```java
int primss(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = weight(current,neighbor);
                if(distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if (new_dist < distances[neighbor]){ // Weight is less than current edge
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); // Decrease key in the priority queue
                }
            }
        }
    }
    return distances[end]
}
```
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end) {
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty) {
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors) {
            if (!done[neighbor]) {
                new_dist = distances[current] + weight(current, neighbor);
                if (distances[neighbor] == ∞) {
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                } else 
                if (new_dist < distances[neighbor]) {
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```
int primss(graph, start, end){
 distances = [∞, ∞, ∞,...]; // one index per node
 done = [False,False,False,...]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 } else if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist, neighbor);
 }
 }
 }
 }
 return distances[end]
}