Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge (v, w): $\Theta(\text{deg}(v))$
Remove Edge (v, w): $\Theta(\text{deg}(v))$
Check if Edge (v, w) Exists: $\Theta(\text{deg}(v))$
Get Neighbors (incoming): $\Theta(n + m)$
Get Neighbors (outgoing): $\Theta(\text{deg}(v))$
int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}
Single-Source Shortest Path

Find the quickest way to get from UW to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

• Input: graph with **no negative edge weights**, start node s, end node t

• Behavior: Start with node s, repeatedly go to the incomplete node “nearest” to s, stop when

• Output:
 • Distance from start to end
 • Distance from start to every node
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.extract();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if (new_dist < distances[neighbor]){
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```
Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
 • How many times is each node added to the priority queue?
 • At most once
 • How many times might a node’s priority be changed?
 • Indegree of that node

• What’s the running time of each priority queue operation?
 • $\log |V|$

• Overall running time:
 • $|V| \log |V| + |E| \log |V|$
 • $\Theta(|E| \log |V|)$
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have found its shortest path
• Induction over number of completed nodes
• Base Case:
• Inductive Step:
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, its distance is that of the shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
 • It is indeed 0 away from itself

• Inductive Step:
 • If we have correctly found shortest paths for the first k nodes, then when we remove node $k + 1$ we have found its shortest path
Dijkstra’s Algorithm: Correctness

• Suppose \(a \) is the next node removed from the priority queue. What do we know bout \(a \)?
Dijkstra’s Algorithm: Correctness

• Suppose \(a \) is the next node removed from the priority queue.
 • No other incomplete node has a shorter path discovered so far (e.g. \(b \))
• Claim: no undiscovered path to \(a \) could be shorter
 • Consider any other incomplete node \(b \) that is 1 edge away from a complete node
 • \(a \) is the closest node that is one away from a complete node
 • Thus no path that includes \(b \) can be a shorter path to \(a \)
 • Therefore the shortest path to \(a \) must use only complete nodes, and therefore we have found it already!
Dijkstra’s Algorithm: Correctness

• Suppose a is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to a could be shorter
 • Consider any other incomplete node b that is 1 edge away from a complete node
 • a is the closest node that is one away from a complete node
 • Thus no path that includes b can be a shorter path to a
 • Only because no path from b to a can have negative weight!
 • Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!
Depth-First Search

• Input: a node \(s \)

• Behavior: Start with node \(s \), visit one neighbor of \(s \), then all nodes reachable from that neighbor of \(s \), then another neighbor of \(s \),...
 • Before moving on to the second neighbor of \(s \), visit everything reachable from the first neighbor of \(s \)

• Output:
 • Does the graph have a cycle?
 • A **topological sort** of the graph.
DFS Recursively (more common)

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```
Topological Sort

- A Topological Sort of a directed acyclic graph $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation.
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```

Idea: List in reverse order by “done” time
DFS: Topological sort

List topSort(graph) {
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices) {
 if (!v.visited) {
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished) {
 curr.visited = true;
 for (Node v : curr.neighbors) {
 if (!v.visited) {
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

Idea: List in reverse order by “done” time
Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!
Definition: Tree

A connected graph with no cycles

Pick some arbitrary root node and rearrange tree
Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$

How many edges does T have?

$V - 1$

Any set of V-1 edges in the graph that doesn’t have any cycles is guaranteed to be a spanning tree!

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C).

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal’s has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal’s selects to add next.

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle.

We can cut the graph therefore into 2 disjoint sets:
 • nodes reachable from G using edges in A
 • All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)
$O(E \log V)$
General MST Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects (typically implicitly)

Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
 Pick a cut $(S, V - S)$ which A respects
 Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A
e is the min-weight edge that grows the tree
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V − 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node
in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap $O(E \log V)$
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = distances[current]+weight(current,neighbor);
                if (distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if (new_dist < distances[neighbor]){  
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```
int primss(graph, start, end) {
 distances = [∞, ∞, ∞, ...]; // one index per node
 done = [False, False, False, ...]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty()) {
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors) {
 if (!done[neighbor]) {
 new_dist = weight(current, neighbor);
 if (distances[neighbor] == ∞) {
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]) {
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist, neighbor);
 }
 }
 }
 }
 return distances[end]
}
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if(new_dist < distances[neighbor]){ // Update distance
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```
int primss(graph, start, end){
 distances = \[\infty, \infty, \infty,...\]; // one index per node
 done = [False, False, False,...]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if (distances[neighbor] == \infty){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){ // Update distances and priority queue
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist, neighbor);
 }
 }
 }
 }
 return distances[end]
}