
CSE 332 Summer 2024
Lecture 16: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Adjacency List

2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Shortest Path (unweighted)

3

int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Single-Source Shortest Path

4

Find the quickest way to get from UW to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

1 6

13
2

10

12

8

15
203

6 5

Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node
“nearest” to 𝑠, stop when

• Output:
• Distance from start to end

• Distance from start to every node

5

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

6

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.extract();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• At most once

• How many times might a node’s priority be changed?
• Indegree of that node

• What’s the running time of each priority queue operation?
• log |𝑉|

• Overall running time:
• V log 𝑉 + 𝐸 log |𝑉|

• Θ 𝐸 log 𝑉

7

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:

8

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first

𝑘 nodes, then when we remove node 𝑘 + 1 we have
found its shortest path

9

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the
priority queue. What do we know bout 𝑎?

10

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the priority
queue.
• No other incomplete node has a shorter path discovered so

far (e.g. 𝑏)

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

11

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎
• Only because no path from 𝑏 to 𝑎 can have negative weight!

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

12

𝑠

𝑥

𝑦

𝑎

𝑏

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable

from the first neighbor of 𝑠

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

13

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS Recursively (more common)

14

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

15

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

DFS Recursively

16

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Idea: List in reverse
order by “done” time

DFS: Topological sort

17

List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

1

2

3

4

5

6
7

9

8

finished:

Idea: List in reverse
order by “done” time

Definition: Tree

18

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Note: A tree does not need
a root, but they often do!

Definition: Tree

19

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Pick some arbitrary
root node and
rearrange tree 10

11

9

5

3

73

12

A

B

C

D

EF

G

IH

Definition: Spanning Tree

20

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that
doesn’t have any cycles is guaranteed
to be a spanning tree!

Any set of V-1 edges that connects all
the nodes in the graph is guaranteed to
be a spanning tree!

10
2

6

5

8

3

1

8

A

B

C D

E

F

G I

H

Pick some arbitrary
root node and
rearrange tree

Definition: Minimum Spanning Tree

21

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 =

𝑒∈𝐸𝑇

𝑤(𝑒)

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

22

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

23

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

24

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

25

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

26

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

27

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: Cut

28

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

29

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

30

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

31

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

32

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

33

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Kruskal’s Algorithm

34

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of
edges 𝐴 that Kruskal’s has already selected to
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
𝐹 to G using only edges in 𝐴 because 𝑒 does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

Kruskal’s Algorithm Runtime

35

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

General MST Algorithm

36

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

37

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

38

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

39

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

40

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

41

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

42

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

43

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Dijkstra’s Algorithm

44

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int primss(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Prims’s Algorithm

45

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Dijkstra’s Algorithm

46

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int primss(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Prims’s Algorithm

	Slide 1: CSE 332 Summer 2024 Lecture 16: Graphs
	Slide 2: Adjacency List
	Slide 3: Shortest Path (unweighted)
	Slide 4: Single-Source Shortest Path
	Slide 5: Dijkstra’s Algorithm
	Slide 6: Dijkstra’s Algorithm
	Slide 7: Dijkstra’s Algorithm: Running Time
	Slide 8: Dijkstra’s Algorithm: Correctness
	Slide 9: Dijkstra’s Algorithm: Correctness
	Slide 10: Dijkstra’s Algorithm: Correctness
	Slide 11: Dijkstra’s Algorithm: Correctness
	Slide 12: Dijkstra’s Algorithm: Correctness
	Slide 13: Depth-First Search
	Slide 14: DFS Recursively (more common)
	Slide 15: Topological Sort
	Slide 16: DFS Recursively
	Slide 17: DFS: Topological sort
	Slide 18: Definition: Tree
	Slide 19: Definition: Tree
	Slide 20: Definition: Spanning Tree
	Slide 21: Definition: Minimum Spanning Tree
	Slide 22: Kruskal’s Algorithm
	Slide 23: Kruskal’s Algorithm
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Definition: Cut
	Slide 29: Cut Theorem
	Slide 30: Cut Theorem
	Slide 31: Cut Theorem
	Slide 32: Cut Theorem
	Slide 33: Cut Theorem
	Slide 34: Proof of Kruskal’s Algorithm
	Slide 35: Kruskal’s Algorithm Runtime
	Slide 36: General MST Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Prims’s Algorithm
	Slide 45: Dijkstra’s Algorithm
	Slide 46: Prims’s Algorithm

