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Adjacency List
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Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛 
𝐸 = 𝑚 



Shortest Path (unweighted)
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int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  layer = depth of current;
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    depth of v = layer + 1;
    found.enqueue(v);
   }
  }
 }
 return depth of t; 
}   

Idea: when it’s seen, remember 
its “layer” depth!
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Single-Source Shortest Path
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Find the quickest way to get from UW to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find 
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)
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Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node 
“nearest” to 𝑠, stop when 

• Output: 
• Distance from start to end

• Distance from start to every node
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Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.extract();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}
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Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• At most once

• How many times might a node’s priority be changed?
• Indegree of that node

• What’s the running time of each priority queue operation?
• log |𝑉|

• Overall running time:
• V log 𝑉 + 𝐸 log |𝑉|

• Θ 𝐸 log 𝑉
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have 
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the 
priority queue, its distance is that of the 
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first 

𝑘 nodes, then when we remove node 𝑘 + 1 we have 
found its shortest path
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the 
priority queue. What do we know bout 𝑎?
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the priority 
queue. 
• No other incomplete node has a shorter path discovered so 

far (e.g. 𝑏)

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎
• Only because no path from 𝑏 to 𝑎 can have negative weight!

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable 

from the first neighbor of 𝑠

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.

13

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7



DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation
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DFS Recursively

16

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Idea: List in reverse 
order by “done” time



DFS: Topological sort
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List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.add(curr)
}   
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Idea: List in reverse 
order by “done” time



Definition: Tree
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A connected graph with no cycles
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Note: A tree does not need 
a root, but they often do!



Definition: Tree

19

A connected graph with no cycles
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Definition: Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that 
doesn’t have any cycles is guaranteed 
to be a spanning tree!

Any set of V-1 edges that connects all 
the nodes in the graph is guaranteed to 
be a spanning tree!
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Definition: Minimum Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has 
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = 

𝑒∈𝐸𝑇

𝑤(𝑒)
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm

23

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm

24

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm

25

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H



Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H



Kruskal’s Algorithm

27

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Definition: Cut
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A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆 
(or opposite), e.g. (𝐴, 𝐶) 

A set of edges 𝑅 Respects a cut 
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Proof of Kruskal’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of 
edges 𝐴 that Kruskal’s has already selected to 
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge 
Kruskal’s selects to add next

We know that there cannot exist a path from 
𝐹 to G using only edges in 𝐴 because 𝑒 does not 
cause a cycle

We can cut the graph therefore into 2 disjoint 
sets: 
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut, 
so by the Cut Theorem, Kruskal’s is optimal!



Kruskal’s Algorithm Runtime

35

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set 
data structure (very fancy)

𝑂 𝐸 log 𝑉
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General MST Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Dijkstra’s Algorithm
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int primss(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Prims’s Algorithm
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Dijkstra’s Algorithm
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int primss(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Prims’s Algorithm
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