CSE 332 Summer 2024
Lecture 16: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

AdJacenc List

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge (v,w): O(deg(v))
Remove Edge (v, w): O(deg(v)) V] =n
Check if Edge (v, w) Exists: ©@(deg(v)) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

Shortest Path (unweighted) " Shor:sza:aihégeﬁpgl];te)({);
layer = 0;
found.enqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
(9] layer = depth of current;
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
depth of v = layer + 1;

ldea: when it’s seen, remember found.enqueue(v);
its “layer” depth! } }

}

return depth of t;

Single-Source Shortest Path

ff s

SR

International

= '5'

v/~

THE :
UNIVERSITY
OFUTAH

Find the quickest way to get from UW to each of these other places

Given agraph G = (V,E) and astart node s € V, for each v € V find
the least-weight path from s = v (call this weight § (s, v))

(assumption: all edge weights are positive)

Dijkstra’s Algorithm

* Input: graph with no negative edge weights, start node s, end node ¢t

* Behavior: Start with node s, repeatedly go to the incomplete node
“nearest” to s, stop when

* Output:
g (D——(3)
e Distance from start to end 10 5
* Distance from start to every node @ / @
9
@ > 9
12 3
@ 1

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @

distances|[start] = 0;
while (IPQ.isEmpty){
current = PQ.extract(); @

done[current] = true; @

for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

Dijkstra’s Algorithm: Running Time

* How many total priority queue operations are necessary?

* How many times is each node added to the priority queue?
* At most once

* How many times might a node’s priority be changed?
* Indegree of that node
* What'’s the running time of each priority queue operation?
* log|V]
e Overall running time:
* [V[log|V] + |E|log|V|
* O(|E]log|V])

Dijkstra’s Algorithm: Correctness

* Claim: when a node is removed from the priority queue, we have
found its shortest path

* Induction over number of completed nodes
* Base Case:
* Inductive Step:

Dijkstra’s Algorithm: Correctness

e Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

* Induction over number of completed nodes

* Base Case: Only the start node removed
* |tis indeed 0 away from itself

* Inductive Step:

* If we have correctly found shortest paths for the first
k nodes, then when we remove node k + 1 we have
found its shortest path

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the
priority queue. What do we know bout a?

10

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the priority
queue.

* No other incomplete node has a shorter path discovered so
far (e.g. b)
* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node

e Thus no path that includes b can be a shorter path to a
* Only because no path from b to a can have negative weight!

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Before moving on to the second neighbor of s, visit everything reachable
from the first neighbor of s

1 2
* Output:) ONE
* Does the graph have a cycle? 0
« A topological sort of the graph. O 6@

;€

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -G 0G0

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by “done” time

16

DFS: Topological sort

List topSort(graph){
List<Nodes> done = new List<>();
for (Node v : graph.vertices){
if (v.visited){
finishTime(graph, v, finished);
}
}

done.reverse();
return done;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){
finishTime(graph, v, finished);
}
}

done.add(curr)

finished:

ldea: List in reverse
order by “done” time

Definition: Tree

A connected graph with no cycles

Note: A tree does not need
a root, but they often do!

18

Definition: Tree

A connected graph with no cycles

Pick some arbitrary
root node and
rearrange tree

19

Definition: Spanning Tree

A Tree T = (V, Et) which connects (“spans”)
all the nodesina graph ¢ = (V,E)

3 How many edges does T have?
B Q..

, 0 V-1 8 _@ s

> 9
12 . 0 " (A (G) O
e 3 Pick some arbitrary

6
11 root node and 1 G
1 G - @ rearrange tree G 3 Q

Any set of V-1 edges in the graph that Any set of V-1 edges that connects all

doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to
to be a spanning tree! be a spanning tree! 20

Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
all the nodes in a graph ¢ = (V, E), that has
minimal cost

0 0.,
7 H Cost(T) = Z w(e)

eeEr

21

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

22

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

23

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

24

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

25

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

26

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

27

Definition: Cut

A Cut of graph G = (V/, E) is a partition of the
nodes into two sets, Sand V' — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut
cutifvpeSandv, eV —-3S if no edges cross the cut
(or opposite), e.g. (4, C) eg.R={(4,B) (EG)(F,G)} |,

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (S,V —S5). AU is also a subset of a minimum spanning

tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

10 O——0_,
7 @
0 9 Q 5)
S O
12 3
G i e 11
' G 6 30

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S,V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

31

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

32

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

33

Proof of Kruskal’s Algorithm

Start with an empty tree A

Repeat V' — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Proof: Suppose we have some arbitrary set of
edges A that Kruskal’s has already selected to
include in the MST. e = (F, () is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
F to G using only edges in A because e does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:

* nodes reachable from G using edges in A

* All other nodes

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

34

Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Keep edges in a Disjoint-set
data structure (very fancy)
O(E logV)

35

General MST Algorithm

Start with an empty tree A

Repeat V — 1 times:
Pick a cut (5,V — 5) which A respects (typically implicitly)
Add the min-weight edge which crosses (S,V —)

36

Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V —)

S is all endpoint of edges in
e is the min-weight edge that grows the

10 A0,

37

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

38

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

39

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

40

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e

41

Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

42

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @

distances|[start] = 0;
while (IPQ.isEmpty){
current = PQ.deleteMin(); @

done[current] = true; @

for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

Prims’s Algorithm

int primss(graph, start, end){
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){

current = PQ.deleteMin(); @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

44

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @

distances|[start] = 0;
while (IPQ.isEmpty){
current = PQ.deleteMin(); @

done[current] = true; @

for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

45

Prims’s Algorithm

int primss(graph, start, end){
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){

current = PQ.deleteMin(); @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

46

	Slide 1: CSE 332 Summer 2024 Lecture 16: Graphs
	Slide 2: Adjacency List
	Slide 3: Shortest Path (unweighted)
	Slide 4: Single-Source Shortest Path
	Slide 5: Dijkstra’s Algorithm
	Slide 6: Dijkstra’s Algorithm
	Slide 7: Dijkstra’s Algorithm: Running Time
	Slide 8: Dijkstra’s Algorithm: Correctness
	Slide 9: Dijkstra’s Algorithm: Correctness
	Slide 10: Dijkstra’s Algorithm: Correctness
	Slide 11: Dijkstra’s Algorithm: Correctness
	Slide 12: Dijkstra’s Algorithm: Correctness
	Slide 13: Depth-First Search
	Slide 14: DFS Recursively (more common)
	Slide 15: Topological Sort
	Slide 16: DFS Recursively
	Slide 17: DFS: Topological sort
	Slide 18: Definition: Tree
	Slide 19: Definition: Tree
	Slide 20: Definition: Spanning Tree
	Slide 21: Definition: Minimum Spanning Tree
	Slide 22: Kruskal’s Algorithm
	Slide 23: Kruskal’s Algorithm
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Definition: Cut
	Slide 29: Cut Theorem
	Slide 30: Cut Theorem
	Slide 31: Cut Theorem
	Slide 32: Cut Theorem
	Slide 33: Cut Theorem
	Slide 34: Proof of Kruskal’s Algorithm
	Slide 35: Kruskal’s Algorithm Runtime
	Slide 36: General MST Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Prims’s Algorithm
	Slide 45: Dijkstra’s Algorithm
	Slide 46: Prims’s Algorithm

