CSE 332 Summer 2024 Lecture 16: Graphs

Nathan Brunelle

<http://www.cs.uw.edu/332>

Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$ Add Edge (v, w) : $\Theta(\deg(v))$ Remove Edge (v, w) : $\Theta(\deg(v))$ Check if Edge (v, w) Exists: $\Theta(\deg(v))$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$
\begin{array}{|c|c|}\n|V| = n \\
|E| = m\n\end{array}
$$

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth!

int shortestPath(graph, s, t){ found = new $Queue()$; $layer = 0;$ found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of $v =$ layer + 1; found.enqueue(v); } }

return depth of t;

}

Single-Source Shortest Path

Find the quickest way to get from UW to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \to v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)

Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node s, end node t
- Behavior: Start with node s , repeatedly go to the incomplete node "nearest" to s , stop when
- Output:
	- Distance from start to end
	- Distance from start to every node

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,…]; // one index per node
          PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.extract();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new_dist, neighbor);
                                          }
                                          if (new_dist < distances[neighbor]){
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new_dist,neighbor); }
                                }
                     }
          }
          return distances[end]
```


Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
	- How many times is each node added to the priority queue?
		- At most once
	- How many times might a node's priority be changed?
		- Indegree of that node
- What's the running time of each priority queue operation?
	- \bullet log |V|
- Overall running time:
	- $|V| \log |V| + |E| \log |V|$
	- \bullet $\Theta(|E| \log |V|)$

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
	- It is indeed 0 away from itself
- Inductive Step:
	- If we have correctly found shortest paths for the first k nodes, then when we remove node $k + 1$ we have found its shortest path

• Suppose a is the next node removed from the priority queue. What do we know bout a ?

- Suppose α is the next node removed from the priority queue.
	- No other incomplete node has a shorter path discovered so far (e.g. b)
- \bullet Claim: no undiscovered path to a could be shorter
	- Consider any other incomplete node b that is 1 edge away from a complete node
	- a is the closest node that is one away from a complete node
	- Thus no path that includes b can be a shorter path to a
	- Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!

- Suppose a is the next node removed from the queue.
	- No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
	- Consider any other incomplete node b that is 1 edge away from a complete node
	- \bullet a is the closest node that is one away from a complete node
	- Thus no path that includes b can be a shorter path to a
		- Only because no path from b to a can have negative weight!
	- Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!

Depth-First Search

- Input: a node s
- Behavior: Start with node s , visit one neighbor of s , then all nodes reachable from that neighbor of s , then another neighbor of s ,...
	- Before moving on to the second neighbor of s , visit everything reachable from the first neighbor of s
- Output:
	- Does the graph have a cycle?
	- A **topological sort** of the graph.

DFS Recursively (more common)

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
              }
       }
       mark curr as "done";
```


Topological Sort

• A Topological Sort of a **directed acyclic graph** $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

DFS Recursively

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
              }
       }
       mark curr as "done";
```
}

Idea: List in reverse order by "done" time

DFS: Topological sort

```
List topSort(graph){
         List<Nodes> done = new List<>();
         for (Node v : graph.vertices){
                  if (!v.visited){
                           finishTime(graph, v, finished);
                  }
         }
         done.reverse();
         return done;
```
Idea: List in reverse order by "done" time


```
void finishTime(graph, curr, finished){
         curr.visited = true;
         for (Node v : curr.neighbors){
                   if (!v.visited){
                            finishTime(graph, v, finished);
                   }
          }
         done.add(curr)
```
}

Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree A Tree $\mathbf{T} = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$

root node and

How many edges does *have?*

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

20 Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Definition: Minimum Spanning Tree

A Tree $\mathbf{T} = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$
Cost(T) = \sum_{e \in E_T} w(e)
$$

Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}\$

28

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. A \cup {e} is also a subset of a minimum spanning tree.

If a set of edges \overline{A} is a subset of a minimum spanning tree \overline{T} , let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. A \cup {e} is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V \overline{S}$) be any cut which \overline{A} respects. Let e be the least-weight edge which crosses $(S, V - S)$. A \cup {e} is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. A U {e} is also a subset of a minimum spanning tree.

Proof of Kruskal's Algorithm

Start with an empty tree \vec{A} Repeat $V - 1$ times: Add the min-weight edge that doesn't cause a cycle

Proof: Suppose we have some arbitrary set of edges \vec{A} that Kruskal's has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in \vec{A} because \vec{e} does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in \vec{A}
- All other nodes

 e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn't

cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm

Start with an empty tree A Repeat $V - 1$ times: Pick a cut $(S, V - S)$ which A respects (typically implicitly) Add the min-weight edge which crosses $(S, V - S)$


```
Prim's Algorithm
      Start with an empty tree ARepeat V - 1 times:
            Pick a cut (S, V - S) which A respects
            Add the min-weight edge which crosses (S, V - S)
```
 \overline{S} is all endpoint of edges in \overline{A}

 e is the min-weight edge that grows the tree

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,…]; // one index per node
          PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                                if (!done[neighbor]){
                                           }
                                           if (new_dist < distances[neighbor]){
                                }
                     }
           }
          return distances[end]
```


```
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == \infty){
          distances[neighbor] = new dist;
          PQ.insert(new_dist, neighbor);
```

```
distances[neighbor] = new dist;
PQ.decreaseKey(new_dist,neighbor); }
```
Prims's Algorithm

```
int primss(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,…]; // one index per node
          PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                    current = PQ.deleteMin();
                    done[current] = true;
                    for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new_dist, neighbor);
                                          }
                                          if (new_dist < distances[neighbor]){
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new_dist,neighbor); }
                               }
                     }
          }
          return distances[end]
```


Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,…]; // one index per node
          PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new_dist, neighbor);
                                          }
                                          if (new_dist < distances[neighbor]){
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new_dist,neighbor); }
                                }
                     }
          }
          return distances[end]
```


Prims's Algorithm

```
int primss(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,…]; // one index per node
          PQ = new minheap();PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                    current = PQ.deleteMin();
                    done[current] = true;
                    for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new dist = weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new_dist, neighbor);
                                          }
                                          if (new_dist < distances[neighbor]){
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new_dist,neighbor); }
                               }
                     }
          }
          return distances[end]
```
