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AdJacenc List

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge (v,w): O(deg(v))
Remove Edge (v, w): O(deg(v)) V] =n
Check if Edge (v, w) Exists: ©@(deg(v)) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))




Adjacency Matrix

1
2
3
4
5
Time/Space Tradeoffs
6
Space to represent: @(n?) :
Add Edge (v,w): O(1)
Remove Edge (v, w): ©(1) Vl=n ®
Check if Edge (v, w) Exists: ©(1) |E| = m 9

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)



Comparison

e Adjacency List:
* Less memory when |E| < |V]|?
e Operations with running time linear in degree of source node

 Add an edge
* Remove an edge

* Check for edge
* Get neighbors
* Adjacency Matrix:

e Similar amount of memory when |E| = |V|?
* Constant time operations:

Adjacency List is more common in practice:
* Most graphs have |E| < |V|?
* Saves memory
* Most nodes will have small degree
. Add an edge isjcting neilsﬂhbgrs is a cbombmon Q]E)er:ation
* Remove an edge Jacency atrix may be etter if the
* Check for an edge graph is “dense” or if its edges change a lot

* Operations running with linear time in |V|
* Get neighbors



Breadth-First Search

,\

* Input: anode s

» Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Visits every node reachable from s in order of distance
* Output:
 How long is the shortest path? @
'Y 9
4 L
@ =
@ 5

* |s the graph connected?
o=




void bfs(graph, s){
found = new Queue();
found.enqueue(s); (/
mark s as “visited”; J T
Whlle (Ifound.isEmpty()){
(9 current = found.dequeue();
C\// {( G~

- for (v : nelghbors(cu—%
if ﬁvrnm%){

;J g "~ markvas “visited”;
found.enqueue(v);

Running time: @Z(I/VI/+L_\P



Shortest Path (unweighted) " Shor:sza:aihﬁgeﬁpgife)({);
ound.enqueue(s);
mark s as “visited”; %_
While (!found.isEmpty()){
current = found.dequeue();
(9] layer = gdepth of current;,
for (v :neighbors(current)){
if (! v marked “visited” ){
mark v as “visited”;
depth of v = layer + 1;

—/

ldea: when it’s seen, remember found.enqueue(v);

its “layer” depth! } }

} /x
@epth of t;




M—First Search



Depth-First Search

—_—

* Input: anode s

————

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Before moving on to the second neighbor of s, visit everythin chable
from the first neighbor of s

* Output:
* Does the graph have a cycle? 0

e A toWrt of the graph. [ 1)
Ny

{3,
— 6,

\



) : void dfs(graph, s){
DFS (n;)/n re(>:<u FSIVQ) found = new Stack();

O——@ found.pesls); < —5 L( < )

/g o mark s as “visited”;
@) <\ While (found.isEmpty()){

Q/X __current =tfound.pop();

<O for (v : neighbors(current)){
S ~>{ 5| I

if (! v marked “visited” ){
mark v as “visited”;
found.push(v);

©

Running time: O(|V| + |E|)

_ }

(S

10



DFS Recursively (more common)

void dfs(graph, curr)j [
mark curr as m
N for (v neighbors(current)){<& &L

if (I v marked “visited”){

&

dfs(graph, v);
} N
}

mark curr as “done”;
\ _

11



Using DFS Lﬁ —

4

 Consider the “visited times” and “done times’
* Edges can be categorized: Visited : 1 Visited : 2

S——

o Done: 8 :
Tree Edge Done: 7 \isited : 3

* (a, b) was followed when pushing  Visited: 0 A Done: 6
* (a,b) when b was unvisited when we were at a Done: 15 2

* (a,b) goes to an “ancestor”
* a and b visited but not done when we saw (a, b)

" Back Edge | ﬂ

* tyisitea (D) < tyisitea(@) < taone(@) < tgone (b) Visited : 9

e Forward Edge Done: 14
* (a,b) goes to a “descendent” Visited : 11~ Visited : 4
b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 2



Back Edges

* Behavior of DFS:
* “Visit everything reachable from the current node before going back”

. Bac@ge: o o

* The current node’s neighbor is an “in progress” node
* Since that other node is “in progress”, the current node is reachable from it
* The back edge is a path to that other node I

* Cycle!

/__

—




ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;

cycleFound = faise;

for (v : neighbors(current)){

@ @ if (v marked “visited” && ! v marked “done” ){
cycleFound=true; T
0 o D—
if (! v marked “visited” &&\
O cycIeFom_:/hasCyLIe(_graph, v);
O @ } }

mark curr as “done”;
return cycleFound; <=

} 14



Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -G 0G0



DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by “done” time

16



DFS: Topological sort

List topSort(graph){
List<Nodes> done = new List<>();
for (Node v : graph.vertices){
if (v.visited){
finishTime(graph, v, finished);
}
}

done.reverse();
return done;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){
finishTime(graph, v, finished);
}
}

done.add(curr)

finished:

ldea: List in reverse
order by “done” time




Single-Source Shortest Pat

International
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w L
Find the quickest way to get frory@o each of these other places

Given agraph G = (V,E) and astart node s € V, for each v € V find
the least-weight path from s = v (call this weight § (s, v))

(assumption: all edge weights are positive)

18



é[%ksﬂa’s Algorithm

* Input: graph with no negative edge weights, start node s, end node ¢t

* Behavior: Start with node s, repeatedly go to the incomplete node
“nearest” to s, stop when

* Qutput:
y (D—i—(a)
* Distance from start to end 10, 6
/—\
* Distance from start to every node @ - / @ ,
9
(3) > 9
12 3
@ 1

19



Dijkstra’s Algorithm

Start: O .
ldea: When a node is the closest

End: 8
" // undiscovered thing to the start,
we have found its shortest path

Node Done? Node Distance

0
K16 AL
)2 ; )

cOo N O U0 A W N, O
T M M M M M M M m
cOo N O U A W N ~ O

20



Dijkstra’s Algorithm

Start: O .
ldea: When a node is the closest
End: 8 . .
/ undiscovered thing to the start,
L/ we have found its shortest path
Node Done? Node Distance
0 T 0 0
2 F 2 12 v @
3 F 3 00 9 @ . 2
4 F 4 KK \ 9 Q
5 F 5 0 @ 3 .
6 F 6 00 11
7 F 7 0 1 @ 7 @
8 F 8 00

21



Dijkstra’s Algorithm

Start: 0
End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 F 2 12
3 F 3 A (S
4 F 4 18
5 F 5 > | j
6 F 6 00
7 F 7 00
8 F 8 00

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

22




Dijkstra’s Algorithm

Start: O
End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 / “F
4 F 4 18
5 F 5 13
6 F 6 }k Z’ O
7 F 7 00
8 F 8 00

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

23




Dijkstra’s Algorithm
Start: O
End: 8

Node Done? Node w

0 T 0 0

1 T 1 10

2 T 2 12

3 F 3 14

4 F 4 18
5 T 5 13

6 F 6 00

7 F 7 20

8 F 8 00

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

24




) , .
Dijkstra’s Algorithm
int dijkstras(graph, start, end){
distances = [0, 00, 0,...]; // one index per node
done = [False,False,False,...]; // one index per node
PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){
current = PQ.extract();
done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

25



Dijkstra’s Algorithm: Running Time

* How many total priority queue operations are necessary?

* How many times is each node added to the priority queue?
* At most once

* How many times might a node’s priority be changed?
* Indegree of that node
* What'’s the running time of each priority queue operation?
* log|V]
e Overall running time:
* [V[log|V] + |E|log|V|
* O(|E]log|V])



Dijkstra’s Algorithm: Correctness

* Claim: when a node is removed from the priority queue, we have
found its shortest path

* Induction over number of completed nodes
* Base Case:
* Inductive Step:




Dijkstra’s Algorithm: Correctness

e Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

* Induction over number of completed nodes

* Base Case: Only the start node removed
* |tis indeed 0 away from itself

* Inductive Step:

* If we have correctly found shortest paths for the first
k nodes, then when we remove node k + 1 we have
found its shortest path



Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the
queue. What do we know bout a?

29



Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!




Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
* No path from b to a can have negative weight
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!




Definition: Tree

A connected graph with no cycles

Note: A tree does not need
a root, but they often do!

32



Definition: Tree

A connected graph with no cycles

Pick some arbitrary
root node and
rearrange tree

33



Definition: Spanning Tree

A Tree T = (V, Et) which connects (“spans”)
all the nodesina graph ¢ = (V,E)

3 How many edges does T have?
B Q..

, 0 V-1 8 _@ s

> 9
12 . 0 " (A (G ) O
e 3 Pick some arbitrary

6
11 root node and 1 G
1 G - @ rearrange tree G 3 Q

Any set of V-1 edges in the graph that Any set of V-1 edges that connects all

doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to
to be a spanning tree! be a spanning tree! 34




Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
all the nodes in a graph ¢ = (V, E), that has
minimal cost

0 0.,
7 H Cost(T) = Z w(e)

eeEr

35



Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

36



Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle
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Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle
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Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle
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Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle
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Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

41



Definition: Cut

A Cut of graph G = (V/, E) is a partition of the
nodes into two sets, Sand V' — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut
cutifvpeSandv, eV —-3S if no edges cross the cut
(or opposite), e.g. (4, C) eg.R={(4,B) (EG)(F,G)} |,



Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (S,V —S5). AU is also a subset of a minimum spanning

tree.



Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

10 O——0_,
7 @
0 9 Q 5 )
S O
12 3
G i e 11
' G 6 44



Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S,V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.
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Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

46



Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

47



Proof of Kruskal’s Algorithm

Start with an empty tree A

Repeat V' — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Proof: Suppose we have some arbitrary set of
edges A that Kruskal’s has already selected to
include in the MST. e = (F, () is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
F to G using only edges in A because e does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:

* nodes reachable from G using edges in A

* All other nodes

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

48



Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Keep edges in a Disjoint-set
data structure (very fancy)
O(E logV)

49



General MST Algorithm

Start with an empty tree A

Repeat V — 1 times:
Pick a cut (5,V — 5) which A respects (typically implicitly)
Add the min-weight edge which crosses (S,V — )

50



Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V — )

S is all endpoint of edges in
e is the min-weight edge that grows the

10 A0,

51



Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

52



Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

53



Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

54



Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e

55



Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

56



Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @

distances|[start] = 0;
while (IPQ.isEmpty){
current = PQ.deleteMin(); @

done[current] = true; @

for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]



Prims’s Algorithm

int primss(graph, start, end){
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){

current = PQ.deleteMin(); @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]
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Dijkstra’s Algorithm

int dijkstras(graph, start, end){ @ 8
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ-= new minheap(); . Q g
PQ.insert(0, start); // priority=0, value=start @

distances|[start] = 0;
while (IPQ.isEmpty){
current = PQ.deleteMin(); @

done[current] = true; @

for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]
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Prims’s Algorithm

int primss(graph, start, end){
distances = [0, 00, 0,...]; // one index per node 10
done = [False,False,False,...]; // one index per node
PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start
distances|[start] = 0;
while (PQ.isEmpty){

current = PQ.deleteMin(); @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = weight(current,neighbor);
if(distances[neighbor] == co){
distances[neighbor] = new_dist;
PQ.insert(new_dist, neighbor);
}
if (new_dist < distances[neighbor]){
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]
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