CSE 332 Summer 2024 Lecture 15: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

Adjacency List

Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge (v, w): $\Theta(\deg(v))$

Remove Edge (v, w): $\Theta(\deg(v))$

Check if Edge (v, w) Exists: $\Theta(\deg(v))$

Get Neighbors (incoming): $\Theta(n+m)$

Get Neighbors (outgoing): $\Theta(\deg(v))$

V	=	n
E	=	m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		-

Adjacency Matrix

Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge (v, w): $\Theta(1)$

Remove Edge (v, w): $\Theta(1)$

Check if Edge (v, w) Exists: $\Theta(1)$

Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

$$|V| = n$$

$$|E|=m$$

	1	2	3	4	5	6	7	8	9
1		1	1						
2	1		1		1				
3	1	1		1		1			
4			1		1	1			
5		1		1			1	1	
6			1	1			1		
7					1	1		1	1
8					1		1		1
9							1	1	

Comparison

- Adjacency List:
 - Less memory when $|E| < |V|^2$
 - Operations with running time linear in degree of source node
 - Add an edge
 - Remove an edge
 - Check for edge
 - Get neighbors
- Adjacency Matrix:
 - Similar amount of memory when $|E| \approx |V|^2$
 - Constant time operations:
 - Add an edge
 - Remove an edge
 - Check for an edge
 - Operations running with linear time in |V|
 - Get neighbors

Adjacency List is more common in practice:

- Most graphs have $|E| \ll |V|^2$
 - Saves memory
 - Most nodes will have small degree
- Getting neighbors is a common operation
- Adjacency Matrix may be better if the graph is "dense" or if its edges change a lot

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Visits every node reachable from s in order of distance
- Output:
 - How long is the shortest path?
 - Is the graph connected?

BFS

Running time: $\Theta(|V| + |E|)$

```
void bfs(graph, s){
      found = new Queue();
      found.enqueue(s);
      mark s as "visited";
      While (!found.isEmpty()){
            current = found.dequeue();
            for (v : neighbors(current)){
                   if (! v marked "visited"){
                         mark v as "visited";
                         found.enqueue(v);
```

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth!

```
int shortestPath(graph, s, t){
       found = new Queue();
       layer = 0;
       found.enqueue(s);
       mark s as "visited";
       While (!found.isEmpty()){
               current = found.dequeue();
               layer = depth of current;
               for (v : neighbors(current)){
                      if (! v marked "visited"){
                              mark v as "visited";
                              depth of v = layer + 1;
                              found.enqueue(v);
       return depth of t;
```

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...
 - Before moving on to the second neighbor of s, visit everything reachable from the first neighbor of s
- Output:
 - Does the graph have a cycle?
 - A **topological sort** of the graph.

DFS (non-recursive)

Running time: $\Theta(|V| + |E|)$

```
void dfs(graph, s){
      found = new Stack();
      found.pop(s);
      mark s as "visited";
      While (!found.isEmpty()){
             current = found.pop();
             for (v : neighbors(current)){
                   if (! v marked "visited"){
                          mark v as "visited";
                          found.push(v);
```

DFS Recursively (more common)

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```


Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (a, b) was followed when pushing
 - (a, b) when b was unvisited when we were at a
 - Back Edge
 - (a, b) goes to an "ancestor"
 - a and b visited but not done when we saw (a, b)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (a, b) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (a, b) goes to a node that doesn't connect to a
 - b was seen and done before a was ever visited
 - $t_{done}(b) < t_{visited}(a)$

Back Edges

- Behavior of DFS:
 - "Visit everything reachable from the current node before going back"
- Back Edge:
 - The current node's neighbor is an "in progress" node
 - Since that other node is "in progress", the current node is reachable from it
 - The back edge is a path to that other node
 - Cycle!

Idea: Look for a back edge!

Cycle Detection

```
boolean hasCycle(graph, curr){
       mark curr as "visited";
       cycleFound = false;
       for (v : neighbors(current)){
              if (v marked "visited" &&! v marked "done"){
                      cycleFound=true;
              if (! v marked "visited" && !cycleFound){
                      cycleFound = hasCycle(graph, v);
       mark curr as "done";
       return cycleFound;
```

Topological Sort

• A Topological Sort of a directed acyclic graph G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

DFS Recursively

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```

Idea: List in reverse order by "done" time

DFS: Topological sort

```
List topSort(graph){
         List<Nodes> done = new List<>();
         for (Node v : graph.vertices){
                  if (!v.visited){
                           finishTime(graph, v, finished);
         done.reverse();
         return done;
                                                           finished:
void finishTime(graph, curr, finished){
         curr.visited = true;
         for (Node v : curr.neighbors){
                  if (!v.visited){
                           finishTime(graph, v, finished);
         done.add(curr)
```

Idea: List in reverse order by "done" time

Single-Source Shortest Path

Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \to v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)

Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node *s*, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node

End: 8

Node	Done?
0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

End: 8

Node	Done?
0	Т
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

End: 8

Node	Done?
0	Т
1	Т
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	18
5	∞
6	∞
7	∞
8	∞

End: 8

Node	Done?
0	Т
1	T
2	T
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	15
4	18
5	13
6	∞
7	∞
8	∞

End: 8

Node	Done?
0	Т
1	Т
2	Т
3	F
4	F
5	Т
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	14
4	18
5	13
6	∞
7	20
8	∞

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
                                                                                        10
          distances = [\infty, \infty, \infty,...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```

Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
 - How many times is each node added to the priority queue?
 - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
 - $\Theta(|E|\log|V|)$

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
 - It is indeed 0 away from itself
- Inductive Step:
 - If we have correctly found shortest paths for the first k nodes, then when we remove node k+1 we have found its shortest path

• Suppose a is the next node removed from the queue. What do we know bout a?

- Suppose a is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
 - ullet Consider any other incomplete node b that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
 - ullet Consider any other incomplete node b that is 1 edge away from a complete node
 - a is the closest node that is one away from a complete node
 - No path from b to a can have negative weight
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E)

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E), that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$

Kruskal's Algorithm

Start with an empty tree *A*Add to *A* the lowest-weight edge that does not create a cycle

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Proof of Kruskal's Algorithm

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal's has already selected to include in the MST. e = (F, G) is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in A
- All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm

Start with an empty tree ARepeat V-1 times:

> Pick a cut (S, V - S) which A respects (typically implicitly) Add the min-weight edge which crosses (S, V - S)

Prim's Algorithm

Start with an empty tree A

Repeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

S is all endpoint of edges in A

e is the min-weight edge that grows the tree

Pick a start node

Repeat V-1 times:

Prim's Algorithm

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Keep edges in a Heap $O(E \log V)$

Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
                                                                                        10
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```

Prims's Algorithm

```
int primss(graph, start, end){
                                                                                        10
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```


Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
                                                                                        10
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```

Prims's Algorithm

```
int primss(graph, start, end){
                                                                                        10
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```

