CSE 332 Summer 2024
Lecture 15: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332
Adjacency List

Time/Space Tradeoffs
Space to represent: $\Theta(n + m)$
Add Edge $(v, w): \Theta(\text{deg}(v))$
Remove Edge $(v, w): \Theta(\text{deg}(v))$
Check if Edge (v, w) Exists: $\Theta(\text{deg}(v))$
Get Neighbors (incoming): $\Theta(n + m)$
Get Neighbors (outgoing): $\Theta(\text{deg}(v))$
Time/Space Tradeoffs

- Space to represent: $\Theta(n^2)$
- Add Edge (v, w): $\Theta(1)$
- Remove Edge (v, w): $\Theta(1)$
- Check if Edge (v, w) Exists: $\Theta(1)$
- Get Neighbors (incoming): $\Theta(n)$
- Get Neighbors (outgoing): $\Theta(n)$

$|V| = n$

$|E| = m$
Comparison

• Adjacency List:
 • Less memory when $|E| < |V|^2$
 • Operations with running time linear in degree of source node
 • Add an edge
 • Remove an edge
 • Check for edge
 • Get neighbors

• Adjacency Matrix:
 • Similar amount of memory when $|E| \approx |V|^2$
 • Constant time operations:
 • Add an edge
 • Remove an edge
 • Check for an edge
 • Operations running with linear time in $|V|$
 • Get neighbors

Adjacency List is more common in practice:
• Most graphs have $|E| \ll |V|^2$
 • Saves memory
 • Most nodes will have small degree
• Getting neighbors is a common operation
• Adjacency Matrix may be better if the graph is “dense” or if its edges change a lot
Breadth-First Search

• Input: a node s
• Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...
• Visits every node reachable from s in order of distance
• Output:
 • How long is the shortest path?
 • Is the graph connected?
void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (!v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

Running time: $\Theta(|V| + |E|)$
Shortest Path (unweighted)

```java
int shortestPath(graph, s, t) {
    found = new Queue();
    layer = 0;
    found.enqueue(s);
    mark s as “visited”;
    While (!found.isEmpty()){
        current = found.dequeue();
        layer = depth of current;
        for (v : neighbors(current)){
            if (!v marked “visited”){
                mark v as “visited”;
                depth of v = layer + 1;
                found.enqueue(v);
            }
        }
    }
    return depth of t;
}
```

Idea: when it’s seen, remember its “layer” depth!
Depth-First Search
Depth-First Search

• Input: a node s

• Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, ...
 • Before moving on to the second neighbor of s, visit everything reachable from the first neighbor of s

• Output:
 • Does the graph have a cycle?
 • A **topological sort** of the graph.
void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

Running time: $\Theta(|V| + |E|)$
DFS Recursively (more common)

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```
Using DFS

- Consider the “visited times” and “done times”
- Edges can be categorized:
 - **Tree Edge**
 - \((a, b)\) was followed when pushing
 - \((a, b)\) when \(b\) was unvisited when we were at \(a\)
 - **Back Edge**
 - \((a, b)\) goes to an “ancestor”
 - \(a\) and \(b\) visited but not done when we saw \((a, b)\)
 - \(t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)\)
 - **Forward Edge**
 - \((a, b)\) goes to a “descendent”
 - \(b\) was visited and done between when \(a\) was visited and done
 - \(t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)\)
 - **Cross Edge**
 - \((a, b)\) goes to a node that doesn’t connect to \(a\)
 - \(b\) was seen and done before \(a\) was ever visited
 - \(t_{done}(b) < t_{visited}(a)\)
Back Edges

• Behavior of DFS:
 • “Visit everything reachable from the current node before going back”

• Back Edge:
 • The current node’s neighbor is an “in progress” node
 • Since that other node is “in progress”, the current node is reachable from it
 • The back edge is a path to that other node
 • Cycle!
boolean hasCycle(graph, curr) {
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)) {
 if (v marked “visited” && ! v marked “done”){
 cycleFound = true;
 }
 if (! v marked “visited” && ! cycleFound) {
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}
Topological Sort

• A Topological Sort of a **directed acyclic graph** $G = (V, E)$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation.
DFS Recursively

```java
void dfs(graph, curr){
    mark curr as “visited”;
    for (v : neighbors(current)){
        if (! v marked “visited”){
            dfs(graph, v);
        }
    }
    mark curr as “done”;
}
```

Idea: List in reverse order by “done” time
DFS: Topological sort

List topSort(graph)
{
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices)
 {
 if (!v.visited)
 {
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished)
{
 curr.visited = true;
 for (Node v : curr.neighbors)
 {
 if (!v.visited)
 {
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

Idea: List in reverse order by “done” time
Find the quickest way to get from UVA to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

- Input: graph with no negative edge weights, start node s, end node t
- Behavior: Start with node s, repeatedly go to the incomplete node “nearest” to s, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

Node	Done?
0 | T
1 | T
2 | F
3 | F
4 | F
5 | F
6 | F
7 | F
8 | F

Node	Distance
0 | 0
1 | 10
2 | 12
3 | ∞
4 | 18
5 | ∞
6 | ∞
7 | ∞
8 | ∞

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

Start: 0
End: 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Done?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path.
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [\infty, \infty, \infty,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == \infty){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if (new_dist < distances[neighbor]){  
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);  
                }
            }
        }
    }
    return distances[end]
}
```
Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
 • How many times is each node added to the priority queue?
 • How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
 • $\Theta(|E| \log|V|)$
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have found its shortest path
• Induction over number of completed nodes
• Base Case:
• Inductive Step:
Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, its distance is that of the shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
 • It is indeed 0 away from itself

• Inductive Step:
 • If we have correctly found shortest paths for the first \(k \) nodes, then when we remove node \(k + 1 \) we have found its shortest path
Dijkstra’s Algorithm: Correctness

• Suppose \(a \) is the next node removed from the queue. What do we know bout \(a \)?
Dijkstra’s Algorithm: Correctness

• Suppose \(a \) is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to \(a \) could be shorter
 • Consider any other incomplete node \(b \) that is 1 edge away from a complete node
 • \(a \) is the closest node that is one away from a complete node
 • Thus no path that includes \(b \) can be a shorter path to \(a \)
 • Therefore the shortest path to \(a \) must use only complete nodes, and therefore we have found it already!
Dijkstra’s Algorithm: Correctness

• Suppose \(a \) is the next node removed from the queue.
 • No other node incomplete node has a shorter path discovered so far

• Claim: no undiscovered path to \(a \) could be shorter
 • Consider any other incomplete node \(b \) that is 1 edge away from a complete node
 • \(a \) is the closest node that is one away from a complete node
 • No path from \(b \) to \(a \) can have negative weight
 • Thus no path that includes \(b \) can be a shorter path to \(a \)
 • Therefore the shortest path to \(a \) must use only complete nodes, and therefore we have found it already!
Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!
Definition: Tree

A connected graph with no cycles

Pick some arbitrary root node and rearrange tree
Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects (“spans”) all the nodes in a graph $G = (V, E)$

How many edges does T have?

$V - 1$

Any set of V-1 edges in the graph that doesn’t have any cycles is guaranteed to be a spanning tree!

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$
Kruskal’s Algorithm

Start with an empty tree A
Add to A the **lowest-weight edge** that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C).

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges \mathcal{A} is a subset of a minimum spanning tree \mathcal{T}, let $(S, V - S)$ be any cut which \mathcal{A} respects. Let e be the least-weight edge which crosses $(S, V - S)$. $\mathcal{A} \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Kruskal’s Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal’s has already selected to include in the MST. $e = (F, G)$ is the edge Kruskal’s selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:
 • nodes reachable from G using edges in A
 • All other nodes

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal’s is optimal!
Kruskal’s Algorithm Runtime

Start with an empty tree A

Repeat $V - 1$ times:

Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)

$O(E \log V)$
General MST Algorithm

Start with an empty tree A

Repeat $V - 1$ times:

Pick a cut $(S, V - S)$ which A respects (typically implicitly)

Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
Pick a cut $(S, V - S)$ which A respects
Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A
e is the min-weight edge that grows the tree
Prim’s Algorithm

Start with an empty tree \(A \)

Pick a start node

Repeat \(V - 1 \) times:

Add the min-weight edge which connects to node in \(A \) with a node not in \(A \)
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm
Start with an empty tree \(A \)
Pick a start node
Repeat \(V - 1 \) times:
Add the min-weight edge which connects to node
in \(A \) with a node not in \(A \)
Prim’s Algorithm
Start with an empty tree \(A \)
Pick a start node
Repeat \(V - 1 \) times:
Add the min-weight edge which connects to node in \(A \) with a node not in \(A \)

Keep edges in a Heap \(O(E \log V) \)
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist,neighbor);
                }
                if (new_dist < distances[neighbor]){  
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist,neighbor);  }
            }
        }
    }
    return distances[end]
}
```
Prims’s Algorithm

```java
int primss(graph, start, end){
    distances = [∞, ∞, ∞,...];  // one index per node
    done = [False,False,False,...];  // one index per node
    PQ = new minheap();
    PQ.insert(0, start);  // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){ // new_dist = weight(current,neighbor);
                if (distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                }
                if (new_dist < distances[neighbor]){ // PQ.decreaseKey(new_dist,neighbor);
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```
Dijkstra’s Algorithm

```java
int dijkstras(graph, start, end){
    distances = [\infty, \infty, \infty,...]; // one index per node
    done = [False,False,False,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){  // new_dist = distances[current]+weight(current,neighbor);
                new_dist = distances[current]+weight(current,neighbor);
                if(distances[neighbor] == \infty){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist,neighbor);
                }
                if (new_dist < distances[neighbor]){  // PQ.decreaseKey(new_dist,neighbor);
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist,neighbor); }
            }
        }
    }
    return distances[end]
}
```
Prims’s Algorithm

```java
int primss(graph, start, end){
    distances = [∞, ∞, ∞,...]; // one index per node
    done = [false,false,false,...]; // one index per node
    PQ = new minheap();
    PQ.insert(0, start); // priority=0, value=start
    distances[start] = 0;
    while (!PQ.isEmpty){
        current = PQ.deleteMin();
        done[current] = true;
        for (neighbor : current.neighbors){
            if (!done[neighbor]){ // new_dist = weight(current,neighbor);
                if (distances[neighbor] == ∞){
                    distances[neighbor] = new_dist;
                    PQ.insert(new_dist, neighbor);
                } else if (new_dist < distances[neighbor]){ // PQ.decreaseKey(new_dist,neighbor);
                    distances[neighbor] = new_dist;
                    PQ.decreaseKey(new_dist, neighbor);
                }
            }
        }
    }
    return distances[end]
}
```