
CSE 332 Summer 2024
Lecture 14: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

ARPANET

2

Undirected Graphs

3

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Directed Graphs

4

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

1

2

3

4

5

6
7

9

8

Self-Edges and Duplicate Edges

5

1

2

3

4

5

6
7

9

8

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

Weighted Graphs

6

10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Graph Applications

• For each application below, consider:
• What are the nodes, what are the edges?

• Is the graph directed?

• Is the graph simple?

• Is the graph weighted?

• Facebook friends

• Twitter followers

• Java inheritance

• Airline Routes

Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an edge

• Degree
• Number of edges “touching” a vertex

• Indegree
• Number of incoming edges

• Outdegree
• Number of outgoing edges

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Definition: Complete Graph

9

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete
Undirected Graph

Complete
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed
Non-simple Graph

1 2

3 4

Definition: Path

10

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path which starts and
ends in the same place

Definition: (Strongly) Connected Graph

11

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Definition: (Strongly) Connected Graph

12

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Connected Not (strongly) Connected

Definition: Weakly Connected Graph

13

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
ignoring direction of edges

1

2

3

4

5

6
7

9

8

Weakly Connected

1

2

3

4

5

6
7

9

8

Not Weakly Connected

Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple:
|𝑉|(|𝑉|−1)

2
• Directed and simple: |𝑉|(|𝑉| − 1)
• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2 we say the graph is dense

• If 𝐸 ∈ Θ |𝑉| we say the graph is sparse

• Because 𝐸 is not always near to 𝑉 2 we do not typically substitute
𝑉 2 for 𝐸 in running times, but leave it as a separate variable
• However, log 𝐸 ∈ Θ log 𝑉

Definition: Tree

15

A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree

1

2

3

4

5

6
7

9

8

A Rooted Tree

1

2

3

4

56

7 9

8

Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)

Adjacency List

17

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency List (Weighted)

18

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

𝑉 = 𝑛
𝐸 = 𝑚

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

Adjacency Matrix

19

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

𝑉 = 𝑛
𝐸 = 𝑚

Time/Space Tradeoffs
Space to represent: Θ(?)
Add Edge (𝑣, 𝑤): Θ(?)
Remove Edge (𝑣, 𝑤): Θ(?)
Check if Edge (𝑣, 𝑤) Exists: Θ(?)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ ?

Adjacency Matrix

20

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

𝑉 = 𝑛
𝐸 = 𝑚

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

Adjacency Matrix (weighted)

21

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

𝑉 = 𝑛
𝐸 = 𝑚

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

Comparison

• Adjacency List:
• Less memory when 𝐸 < 𝑉 2

• Operations with running time linear in degree of source node
• Add an edge
• Remove an edge
• Check for edge
• Get neighbors

• Adjacency Matrix:
• Similar amount of memory when 𝐸 ≈ 𝑉 2

• Constant time operations:
• Add an edge
• Remove an edge
• Check for an edge

• Operations running with linear time in |𝑉|
• Get neighbors

Adjacency List is more common in practice:
• Most graphs have 𝐸 ≪ 𝑉 2

• Saves memory
• Most nodes will have small degree

• Getting neighbors is a common operation
• Adjacency Matrix may be better if the

graph is “dense” or if its edges change a lot

Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors
of neighbors of 𝑠, …

• Visits every node reachable from 𝑠 in order of distance

• Output:
• How long is the shortest path?

• Is the graph connected?

23

1

2

3

4

5

6
7

9

8

BFS

24

void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

Shortest Path (unweighted)

25

int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Depth-First Search

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable

from the first neighbor of 𝑠

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

27

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

28

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

DFS Recursively (more common)

29

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Using DFS

• Consider the “visited times” and “done times”

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 30

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5

1

2

3

4

5

6
7

9

8

Visited : 9
Done: 14

Visited : 10
Done: 13

Visited : 11
Done: 12

Back Edges

• Behavior of DFS:
• “Visit everything reachable from the current node before going back”

• Back Edge:
• The current node’s neighbor is an “in progress” node

• Since that other node is “in progress”, the current node is reachable from it

• The back edge is a path to that other node

• Cycle!

1

2

3

4

5

6
7

9

8

Cycle Detection

32

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

33

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

DFS Recursively

34

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Idea: List in reverse
order by “done” time

DFS: Topological sort

35

List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

1

2

3

4

5

6
7

9

8

finished:

Idea: List in reverse
order by “done” time

Single-Source Shortest Path

36

Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

1 6

13
2

10

12

8

15
203

6 5

Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node
“nearest” to 𝑠, stop when

• Output:
• Distance from start to end

• Distance from start to every node

37

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

38

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

∞

∞

∞

∞

∞ ∞

∞

∞

Node Done?

0 F

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

39

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

∞

∞ ∞

∞

∞

Node Done?

0 T

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

40

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

18

∞ ∞

∞

∞

Node Done?

0 T

1 T

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 18

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

41

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 15

4 18

5 13

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

42

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 T

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 14

4 18

5 13

6 ∞

7 20

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

43

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
• Θ 𝐸 log 𝑉

44

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:

45

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first

𝑘 nodes, then when we remove node 𝑘 + 1 we have
found its shortest path

46

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the
queue. What do we know bout 𝑎?

47

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

48

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

49

𝑠

𝑥

𝑦

𝑎

𝑏

Definition: Tree

50

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Note: A tree does not need
a root, but they often do!

Definition: Tree

51

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Pick some arbitrary
root node and
rearrange tree 10

11

9

5

3

73

12

A

B

C

D

EF

G

IH

Definition: Spanning Tree

52

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that
doesn’t have any cycles is guaranteed
to be a spanning tree!

Any set of V-1 edges that connects all
the nodes in the graph is guaranteed to
be a spanning tree!

10
2

6

5

8

3

1

8

A

B

C D

E

F

G I

H

Pick some arbitrary
root node and
rearrange tree

Definition: Minimum Spanning Tree

53

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 =

𝑒∈𝐸𝑇

𝑤(𝑒)

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

54

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

55

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

56

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

57

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

58

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

59

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: Cut

60

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

61

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

62

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

63

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

64

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

65

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Kruskal’s Algorithm

66

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of
edges 𝐴 that Kruskal’s has already selected to
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
𝐹 to G using only edges in 𝐴 because 𝑒 does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

Kruskal’s Algorithm Runtime

67

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

General MST Algorithm

68

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

69

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

70

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

71

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

72

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

73

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

74

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

75

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Dijkstra’s Algorithm

76

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int primss(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Prims’s Algorithm

77

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Dijkstra’s Algorithm

78

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

int primss(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = weight(current,neighbor);
 if(distances[neighbor] == ∞){
 distances[neighbor] = new_dist;
 PQ.insert(new_dist, neighbor);
 }
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

Prims’s Algorithm

	Slide 1: CSE 332 Summer 2024 Lecture 14: Graphs
	Slide 2: ARPANET
	Slide 3: Undirected Graphs
	Slide 4: Directed Graphs
	Slide 5: Self-Edges and Duplicate Edges
	Slide 6: Weighted Graphs
	Slide 7: Graph Applications
	Slide 8: Some Graph Terms
	Slide 9: Definition: Complete Graph
	Slide 10: Definition: Path
	Slide 11: Definition: (Strongly) Connected Graph
	Slide 12: Definition: (Strongly) Connected Graph
	Slide 13: Definition: Weakly Connected Graph
	Slide 14: Graph Density, Data Structures, Efficiency
	Slide 15: Definition: Tree
	Slide 16: Graph Operations
	Slide 17: Adjacency List
	Slide 18: Adjacency List (Weighted)
	Slide 19: Adjacency Matrix
	Slide 20: Adjacency Matrix
	Slide 21: Adjacency Matrix (weighted)
	Slide 22: Comparison
	Slide 23: Breadth-First Search
	Slide 24: BFS
	Slide 25: Shortest Path (unweighted)
	Slide 26: Depth-First Search
	Slide 27: Depth-First Search
	Slide 28: DFS (non-recursive)
	Slide 29: DFS Recursively (more common)
	Slide 30: Using DFS
	Slide 31: Back Edges
	Slide 32: Cycle Detection
	Slide 33: Topological Sort
	Slide 34: DFS Recursively
	Slide 35: DFS: Topological sort
	Slide 36: Single-Source Shortest Path
	Slide 37: Dijkstra’s Algorithm
	Slide 38: Dijkstra’s Algorithm
	Slide 39: Dijkstra’s Algorithm
	Slide 40: Dijkstra’s Algorithm
	Slide 41: Dijkstra’s Algorithm
	Slide 42: Dijkstra’s Algorithm
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Dijkstra’s Algorithm: Running Time
	Slide 45: Dijkstra’s Algorithm: Correctness
	Slide 46: Dijkstra’s Algorithm: Correctness
	Slide 47: Dijkstra’s Algorithm: Correctness
	Slide 48: Dijkstra’s Algorithm: Correctness
	Slide 49: Dijkstra’s Algorithm: Correctness
	Slide 50: Definition: Tree
	Slide 51: Definition: Tree
	Slide 52: Definition: Spanning Tree
	Slide 53: Definition: Minimum Spanning Tree
	Slide 54: Kruskal’s Algorithm
	Slide 55: Kruskal’s Algorithm
	Slide 56: Kruskal’s Algorithm
	Slide 57: Kruskal’s Algorithm
	Slide 58: Kruskal’s Algorithm
	Slide 59: Kruskal’s Algorithm
	Slide 60: Definition: Cut
	Slide 61: Cut Theorem
	Slide 62: Cut Theorem
	Slide 63: Cut Theorem
	Slide 64: Cut Theorem
	Slide 65: Cut Theorem
	Slide 66: Proof of Kruskal’s Algorithm
	Slide 67: Kruskal’s Algorithm Runtime
	Slide 68: General MST Algorithm
	Slide 69: Prim’s Algorithm
	Slide 70: Prim’s Algorithm
	Slide 71: Prim’s Algorithm
	Slide 72: Prim’s Algorithm
	Slide 73: Prim’s Algorithm
	Slide 74: Prim’s Algorithm
	Slide 75: Dijkstra’s Algorithm
	Slide 76: Prims’s Algorithm
	Slide 77: Dijkstra’s Algorithm
	Slide 78: Prims’s Algorithm

