# CSE 332 Summer 2024 Lecture 14: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

### ARPANET







### Self-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs





### Graph Applications

- For each application below, consider:
  - What are the nodes, what are the edges?
  - Is the graph directed?
  - Is the graph simple?
  - Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

## Some Graph Terms

- Adjacent/Neighbors
  - Nodes are adjacent/neighbors if they share an edge
- Degree
  - Number of edges "touching" a vertex
- Indegree
  - Number of incoming edges
- Outdegree
  - Number of outgoing edges



## Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes  $v_1, v_2 \in V$  there is an edge from  $v_1$  to  $v_2$ 



Complete Undirected Graph

Complete Directed Graph



#### Definition: Path A sequence of nodes $(v_1, v_2, ..., v_k)$ s.t. $\forall 1 \le i \le k - 1$ , $(v_i, v_{i+1}) \in E$ 10 5 3 11 1 6

#### Simple Path:

A path in which each node appears at most once

#### Cycle:

A path which starts and ends in the same place

### Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes  $v_1, v_2 \in V$  there is a path from  $v_1$  to  $v_2$ 



## Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes  $v_1, v_2 \in V$  there is a path from  $v_1$  to  $v_2$ 





Not (strongly) Connected

Connected

### Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes  $v_1, v_2 \in V$  there is a path from  $v_1$  to  $v_2$  ignoring direction of edges



## Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is  $\Theta(|V|^2)$ :
  - Undirected and simple:  $\frac{|V|(|V|-1)}{2}$
  - Directed and simple: |V|(|V| 1)
  - Direct and non-simple (but no duplicates):  $|V|^2$
- If the graph is connected, the minimum number of edges is |V| 1
- If  $|E| \in \Theta(|V|^2)$  we say the graph is **dense**
- If  $|E| \in \Theta(|V|)$  we say the graph is **sparse**
- Because |E| is not always near to  $|V|^2$  we do not typically substitute  $|V|^2$  for |E| in running times, but leave it as a separate variable
  - However,  $\log(|E|) \in \Theta(\log(|V|))$

### Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"





A Rooted Tree

### Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
  - Add Edge
  - Remove Edge
  - Check if Edge Exists
  - Get Neighbors (incoming)
  - Get Neighbors (outgoing)



#### **Time/Space Tradeoffs**

Space to represent:  $\Theta(n + m)$ Add Edge (v, w):  $\Theta(\deg(v))$ Remove Edge (v, w):  $\Theta(\deg(v))$ Check if Edge (v, w) Exists:  $\Theta(\deg(v))$ Get Neighbors (incoming):  $\Theta(n + m)$ Get Neighbors (outgoing):  $\Theta(\deg(v))$ 

$$|V| = n$$
$$|E| = m$$

| 1 | 2 | 3 |   |   |
|---|---|---|---|---|
| 2 | 1 | 3 | 5 |   |
| 3 | 1 | 2 | 4 | 6 |
| 4 | 3 | 5 | 6 |   |
| 5 | 2 | 4 | 7 | 8 |
| 6 | 3 | 4 | 7 |   |
| 7 | 5 | 6 | 8 | 9 |
| 8 | 5 | 7 | 9 |   |
| 9 | 7 | 8 |   | • |



#### **Time/Space Tradeoffs**

Space to represent:  $\Theta(n + m)$ Add Edge (v, w):  $\Theta(\deg(v))$ Remove Edge (v, w):  $\Theta(\deg(v))$ Check if Edge (v, w) Exists:  $\Theta(\deg(v))$ Get Neighbors (incoming):  $\Theta(n + m)$ Get Neighbors (outgoing):  $\Theta(\deg(v))$ 

$$|V| = n$$
$$|E| = m$$

| 1 | 2 | 3 |   |   |
|---|---|---|---|---|
| 2 | 1 | 3 | 5 |   |
| 3 | 1 | 2 | 4 | 6 |
| 4 | 3 | 5 | 6 |   |
| 5 | 2 | 4 | 7 | 8 |
| 6 | 3 | 4 | 7 |   |
| 7 | 5 | 6 | 8 | 9 |
| 8 | 5 | 7 | 9 |   |
| 9 | 7 | 8 |   | • |



**Time/Space Tradeoffs** 

Space to represent:  $\Theta(?)$ Add Edge (v, w):  $\Theta(?)$ Remove Edge (v, w):  $\Theta(?)$ Check if Edge (v, w) Exists:  $\Theta(?)$ Get Neighbors (incoming):  $\Theta(?)$ Get Neighbors (outgoing):  $\Theta(?)$ 

$$|V| = n$$
$$|E| = m$$

|   | А | В | С | D | Е | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|---|
| А |   | 1 | 1 |   |   |   |   |   |   |
| В | 1 |   | 1 |   | 1 |   |   |   |   |
| С | 1 | 1 |   | 1 |   | 1 |   |   |   |
| D |   |   | 1 |   | 1 | 1 |   |   |   |
| Е |   | 1 |   | 1 |   |   | 1 | 1 |   |
| F |   |   | 1 | 1 |   |   | 1 |   |   |
| G |   |   |   |   | 1 | 1 |   | 1 | 1 |
| Н |   |   |   |   | 1 |   | 1 |   | 1 |
| I |   |   |   |   |   |   | 1 | 1 |   |



<u>Time/Space Tradeoffs</u> Space to represent:  $\Theta(n^2)$ Add Edge (v, w):  $\Theta(1)$ Remove Edge (v, w):  $\Theta(1)$ Check if Edge (v, w) Exists:  $\Theta(1)$ Get Neighbors (incoming):  $\Theta(n)$ Get Neighbors (outgoing):  $\Theta(n)$ 

| V | = n |
|---|-----|
|   | = m |

|   | А | В | С | D | Ε | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|---|
| А |   | 1 | 1 |   |   |   |   |   |   |
| В | 1 |   | 1 |   | 1 |   |   |   |   |
| С | 1 | 1 |   | 1 |   | 1 |   |   |   |
| D |   |   | 1 |   | 1 | 1 |   |   |   |
| Е |   | 1 |   | 1 |   |   | 1 | 1 |   |
| F |   |   | 1 | 1 |   |   | 1 |   |   |
| G |   |   |   |   | 1 | 1 |   | 1 | 1 |
| Н |   |   |   |   | 1 |   | 1 |   | 1 |
| I |   |   |   |   |   |   | 1 | 1 |   |



<u>Time/Space Tradeoffs</u> Space to represent:  $\Theta(n^2)$ Add Edge (v, w):  $\Theta(1)$ Remove Edge (v, w):  $\Theta(1)$ Check if Edge (v, w) Exists:  $\Theta(1)$ Get Neighbors (incoming):  $\Theta(n)$ Get Neighbors (outgoing):  $\Theta(n)$ 

| V | = n |
|---|-----|
|   | = m |

|   | А | В | С | D | E | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|---|
| А |   | 1 | 1 |   |   |   |   |   |   |
| В | 1 |   | 1 |   | 1 |   |   |   |   |
| С | 1 | 1 |   | 1 |   | 1 |   |   |   |
| D |   |   | 1 |   | 1 | 1 |   |   |   |
| Е |   | 1 |   | 1 |   |   | 1 | 1 |   |
| F |   |   | 1 | 1 |   |   | 1 |   |   |
| G |   |   |   |   | 1 | 1 |   | 1 | 1 |
| Н |   |   |   |   | 1 |   | 1 |   | 1 |
|   |   |   |   |   |   |   | 1 | 1 |   |

## Comparison

- Adjacency List:
  - Less memory when  $|E| < |V|^2$
  - Operations with running time linear in degree of source node
    - Add an edge
    - Remove an edge
    - Check for edge
    - Get neighbors
- Adjacency Matrix:
  - Similar amount of memory when  $|E| \approx |V|^2$
  - Constant time operations:
    - Add an edge
    - Remove an edge
    - Check for an edge
  - Operations running with linear time in |V|
    - Get neighbors

Adjacency List is more common in practice:

- Most graphs have  $|E| \ll |V|^2$ 
  - Saves memory
  - Most nodes will have small degree
- Getting neighbors is a common operation
- Adjacency Matrix may be better if the graph is "dense" or if its edges change a lot

### Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Visits every node reachable from *s* in order of distance
- Output:
  - How long is the shortest path?
  - Is the graph connected?





#### Running time: $\Theta(|V| + |E|)$

void bfs(graph, s){ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.enqueue(v);

24

### Shortest Path (unweighted)



#### Idea: when it's seen, remember its "layer" depth!

int shortestPath(graph, s, t){ found = new Queue(); layer = 0;found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v);

```
return depth of t;
```

### Depth-First Search

### Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
  - Before moving on to the second neighbor of *s*, visit everything reachable from the first neighbor of *s*
- Output:
  - Does the graph have a cycle?
  - A topological sort of the graph.



## DFS (non-recursive)



#### Running time: $\Theta(|V| + |E|)$

void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

### DFS Recursively (more common)

```
void dfs(graph, curr){
mark curr as "visited";
for (v : neighbors(current)){
    if (! v marked "visited"){
        dfs(graph, v);
        }
    mark curr as "done";
```



## Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
  - Tree Edge
    - (*a*, *b*) was followed when pushing
    - (*a*, *b*) when *b* was unvisited when we were at *a*
  - Back Edge
    - (*a*, *b*) goes to an "ancestor"
    - *a* and *b* visited but not done when we saw (*a*, *b*)
    - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
  - Forward Edge
    - (*a*, *b*) goes to a "descendent"
    - b was visited and done between when a was visited and done
    - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
  - Cross Edge
    - (*a*, *b*) goes to a node that doesn't connect to *a*
    - *b* was seen and done before *a* was ever visited
    - $t_{done}(b) < t_{visited}(a)$



## Back Edges

- Behavior of DFS:
  - "Visit everything reachable from the current node before going back"
- Back Edge:
  - The current node's neighbor is an "in progress" node
  - Since that other node is "in progress", the current node is reachable from it
  - The back edge is a path to that other node
  - Cycle!



## Cycle Detection



### **Topological Sort**

• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if  $(u, v) \in E$  then u is before v in the permutation



### **DFS** Recursively

```
void dfs(graph, curr){
mark curr as "visited";
for (v : neighbors(current)){
    if (! v marked "visited"){
        dfs(graph, v);
        }
    mark curr as "done";
```

#### Idea: List in reverse order by "done" time



### DFS: Topological sort

```
List topSort(graph){
     List<Nodes> done = new List<>();
     for (Node v : graph.vertices){
              if (!v.visited){
                       finishTime(graph, v, finished);
     done.reverse();
     return done;
```

#### Idea: List in reverse order by "done" time



void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)



### Single-Source Shortest Path



Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node  $s \in V$ , for each  $v \in V$  find the least-weight path from  $s \rightarrow v$  (call this weight  $\delta(s, v)$ )

(assumption: all edge weights are positive)
# Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node *s*, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
  - Distance from start to end
  - Distance from start to every node



| ode | Done? | Node | Distance |
|-----|-------|------|----------|
|     | F     | 0    | 0        |
|     | F     | 1    | $\infty$ |
|     | F     | 2    | $\infty$ |
|     | F     | 3    | $\infty$ |
|     | F     | 4    | $\infty$ |
|     | F     | 5    | $\infty$ |
|     | F     | 6    | $\infty$ |
|     | F     | 7    | $\infty$ |
|     | F     | 8    | 00       |

Ν

0

1

2

3

4

5

6

7

8



| ode | Done? | Node | Distance |
|-----|-------|------|----------|
|     | Т     | 0    | 0        |
|     | F     | 1    | 10       |
|     | F     | 2    | 12       |
|     | F     | 3    | $\infty$ |
|     | F     | 4    | $\infty$ |
|     | F     | 5    | $\infty$ |
|     | F     | 6    | $\infty$ |
|     | F     | 7    | $\infty$ |
|     | F     | 8    | $\infty$ |

Ν

0

1

2

3

4

5

6

7

8



| ode | Done? | Node | Distance |
|-----|-------|------|----------|
|     | Т     | 0    | 0        |
|     | Т     | 1    | 10       |
|     | F     | 2    | 12       |
|     | F     | 3    | $\infty$ |
|     | F     | 4    | 18       |
|     | F     | 5    | $\infty$ |
|     | F     | 6    | $\infty$ |
|     | F     | 7    | $\infty$ |
|     | F     | 8    | $\infty$ |

Ν

0

1

2

3

4

5

6

7

8



| de | Done? | Node | Distance |
|----|-------|------|----------|
|    | Т     | 0    | 0        |
|    | Т     | 1    | 10       |
|    | Т     | 2    | 12       |
|    | F     | 3    | 15       |
|    | F     | 4    | 18       |
|    | F     | 5    | 13       |
|    | F     | 6    | $\infty$ |
|    | F     | 7    | $\infty$ |
|    | F     | 8    | $\infty$ |

No

0

1

2

3

4

5

6

7

8



| ode | Done? | Node | Distance |
|-----|-------|------|----------|
|     | Т     | 0    | 0        |
|     | Т     | 1    | 10       |
|     | Т     | 2    | 12       |
|     | F     | 3    | 14       |
|     | F     | 4    | 18       |
|     | Т     | 5    | 13       |
|     | F     | 6    | $\infty$ |
|     | F     | 7    | 20       |
|     | F     | 8    | $\infty$ |

N

0

1

2

3

4

5

6

7

8



#### Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False, False, False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                     distances[neighbor] = new_dist;
                                                     PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                     distances[neighbor] = new dist;
                                                     PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```



# Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
  - How many times is each node added to the priority queue?
  - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
  - $\Theta(|E|\log|V|)$

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:



- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
  - It is indeed 0 away from itself
- Inductive Step:
  - If we have correctly found shortest paths for the first k nodes, then when we remove node k + 1 we have found its shortest path

• Suppose *a* is the next node removed from the queue. What do we know bout *a*?



- Suppose *a* is the next node removed from the queue.
  - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
  - Consider any other incomplete node b that is 1 edge away from a complete node
  - *a* is the closest node that is one away from a complete node
  - Thus no path that includes b can be a shorter path to a
  - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



- Suppose *a* is the next node removed from the queue.
  - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
  - Consider any other incomplete node b that is 1 edge away from a complete node
  - *a* is the closest node that is one away from a complete node
  - No path from *b* to *a* can have negative weight
  - Thus no path that includes *b* can be a shorter path to *a*
  - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



## Definition: Tree

A connected graph with no cycles



Note: A tree does not need a root, but they often do!

## Definition: Tree

A connected graph with no cycles



# Definition: Spanning Tree

A Tree  $T = (V_T, E_T)$  which connects ("spans") all the nodes in a graph G = (V, E)



How many edges does T have?



Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree! Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree! 52

## Definition: Minimum Spanning Tree

A Tree  $T = (V_T, E_T)$  which connects ("spans") all the nodes in a graph G = (V, E), that has minimal cost



$$Cost(T) = \sum_{e \in E_T} w(e)$$













## Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, *S* and V - S



Edge  $(v_1, v_2) \in E$  crosses a cut if  $v_1 \in S$  and  $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g.  $R = \{(A, B), (E, G), (F, G)\}$ 









# Proof of Kruskal's Algorithm

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn't cause a cycle



**Proof:** Suppose we have some arbitrary set of edges *A* that Kruskal's has already selected to include in the MST. e = (F, G) is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in A
- All other nodes

*e* is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

# Kruskal's Algorithm Runtime

Start with an empty tree A

Repeat V - 1 times:

Add the min-weight edge that doesn't

cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)  $O(E \log V)$ 



#### General MST Algorithm

Start with an empty tree ARepeat V - 1 times: Pick a cut (S, V - S) which A respects (typically implicitly) Add the min-weight edge which crosses (S, V - S)



```
Prim's Algorithm

Start with an empty tree A

Repeat V - 1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)
```

*S* is all endpoint of edges in *A* 

*e* is the min-weight edge that grows the tree



Prim's Algorithm Start with an empty tree APick a start node Repeat V - 1 times: Add the min-weight edge which connects to node in A with a node not in A



Prim's Algorithm Start with an empty tree APick a start node Repeat V - 1 times: Add the min-weight edge which connects to node in A with a node not in A



Prim's Algorithm Start with an empty tree APick a start node Repeat V - 1 times: Add the min-weight edge which connects to node in A with a node not in A


Prim's Algorithm Start with an empty tree APick a start node Repeat V - 1 times: Add the min-weight edge which connects to node in A with a node not in A



Prim's Algorithm<br/>Start with an empty tree A<br/>Pick a start nodeKeep edges in a Heap<br/> $O(E \log V)$ Repeat V - 1 times:<br/>Add the min-weight edge which connects to node<br/>in A with a node not in A



## Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False, False, False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                     distances[neighbor] = new dist;
          return distances[end]
```



```
distances[neighbor] = new_dist;
          PQ.insert(new dist, neighbor);
if (new_dist < distances[neighbor]){</pre>
```

PQ.decreaseKey(new dist,neighbor); }

## Prims's Algorithm

```
int primss(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```



## Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False, False, False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = distances[current]+weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                     distances[neighbor] = new_dist;
                                                     PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                     distances[neighbor] = new dist;
                                                     PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```



## Prims's Algorithm

```
int primss(graph, start, end){
          distances = [\infty, \infty, \infty, ...]; // one index per node
          done = [False,False,False,...]; // one index per node
          PQ = new minheap();
          PQ.insert(0, start); // priority=0, value=start
          distances[start] = 0;
          while (!PQ.isEmpty){
                     current = PQ.deleteMin();
                     done[current] = true;
                     for (neighbor : current.neighbors){
                               if (!done[neighbor]){
                                          new_dist = weight(current,neighbor);
                                          if(distances[neighbor] == \infty){
                                                    distances[neighbor] = new_dist;
                                                    PQ.insert(new dist, neighbor);
                                          if (new_dist < distances[neighbor]){</pre>
                                                    distances[neighbor] = new dist;
                                                    PQ.decreaseKey(new dist,neighbor); }
          return distances[end]
```

