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Undirected Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Directed Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }
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Self-Edges and Duplicate Edges
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Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with  Neither self-edges nor duplicate edges are called simple graphs



Weighted Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Graph Applications

• For each application below, consider:
• What are the nodes, what are the edges?

• Is the graph directed?

• Is the graph simple?

• Is the graph weighted?

• Facebook friends

• Twitter followers

• Java inheritance

• Airline Routes



Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an edge

• Degree
• Number of edges “touching” a vertex

• Indegree
• Number of incoming edges

• Outdegree
• Number of outgoing edges
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Definition: Complete Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete 
Undirected Graph

Complete 
Directed Graph
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3 4

1 2

3 4

Complete Directed 
Non-simple Graph
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Definition: Path
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A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘) 
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path which starts and 
ends in the same place



Definition: (Strongly) Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
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Definition: (Strongly) Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
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Connected Not (strongly) Connected



Definition: Weakly Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2 
ignoring direction of edges
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Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple: 
|𝑉|(|𝑉|−1)

2
• Directed and simple: |𝑉|(|𝑉| − 1)
• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2  we say the graph is dense

• If 𝐸 ∈ Θ |𝑉|  we say the graph is sparse

• Because 𝐸  is not always near to 𝑉 2 we do not typically substitute 
𝑉 2 for 𝐸  in running times, but leave it as a separate variable
• However, log 𝐸 ∈ Θ log 𝑉



Definition: Tree
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A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect, 
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree
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Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)



Adjacency List
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2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency List (Weighted)
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𝑉 = 𝑛 
𝐸 = 𝑚 

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge (𝑣, 𝑤): Θ(deg(𝑣))
Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))
Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣



Adjacency Matrix
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𝑉 = 𝑛 
𝐸 = 𝑚 

Time/Space Tradeoffs
Space to represent: Θ(? )
Add Edge (𝑣, 𝑤): Θ(? )
Remove Edge (𝑣, 𝑤): Θ(? )
Check if Edge (𝑣, 𝑤) Exists: Θ(? )
Get Neighbors (incoming): Θ(? )
Get Neighbors (outgoing): Θ ?



Adjacency Matrix
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𝑉 = 𝑛 
𝐸 = 𝑚 

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛



Adjacency Matrix (weighted)
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Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge (𝑣, 𝑤): Θ(1)
Remove Edge (𝑣, 𝑤): Θ(1)
Check if Edge (𝑣, 𝑤) Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛



Comparison

• Adjacency List:
• Less memory when 𝐸 < 𝑉 2

• Operations with running time linear in degree of source node
• Add an edge
• Remove an edge
• Check for edge
• Get neighbors

• Adjacency Matrix:
• Similar amount of memory when 𝐸 ≈ 𝑉 2

• Constant time operations:
• Add an edge
• Remove an edge
• Check for an edge

• Operations running with linear time in |𝑉|
• Get neighbors

Adjacency List is more common in practice:
• Most graphs have 𝐸 ≪ 𝑉 2

• Saves memory
• Most nodes will have small degree

• Getting neighbors is a common operation
• Adjacency Matrix may be better if the 

graph is “dense” or if its edges change a lot



Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors 
of neighbors of 𝑠, …

• Visits every node reachable from 𝑠 in order of distance

• Output: 
• How long is the shortest path?

• Is the graph connected?

23

1

2

3

4

5

6
7

9

8



BFS
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void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.enqueue(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



Shortest Path (unweighted)
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int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  layer = depth of current;
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    depth of v = layer + 1;
    found.enqueue(v);
   }
  }
 }
 return depth of t; 
}   

Idea: when it’s seen, remember 
its “layer” depth!
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Depth-First Search



Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…
• Before moving on to the second neighbor of 𝑠, visit everything reachable 

from the first neighbor of 𝑠

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS (non-recursive)
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void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.pop();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.push(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Using DFS

• Consider the “visited times” and “done times” 

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎  30

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5
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Visited : 9
Done: 14 

Visited : 10
Done: 13 

Visited : 11
Done: 12



Back Edges

• Behavior of DFS:
• “Visit everything reachable from the current node before going back”

• Back Edge:
• The current node’s neighbor is an “in progress” node

• Since that other node is “in progress”, the current node is reachable from it

• The back edge is a path to that other node

• Cycle!

1

2

3

4

5

6
7

9

8



Cycle Detection

32

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
  if (v marked “visited” && ! v marked “done”){
   cycleFound=true;
  }
  if (! v marked “visited” && !cycleFound){
   cycleFound = hasCycle(graph, v);
  }
 }
 mark curr as “done”;
 return cycleFound;
}   
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Idea: Look for a back edge!



Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation

33

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8



DFS Recursively
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Idea: List in reverse 
order by “done” time



DFS: Topological sort
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List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.add(curr)
}   
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finished:

Idea: List in reverse 
order by “done” time



Single-Source Shortest Path
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Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find 
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)
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Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node 
“nearest” to 𝑠, stop when 

• Output: 
• Distance from start to end

• Distance from start to every node
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Dijkstra’s Algorithm
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Node Done?
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8 F

Node Distance

0 0

1 ∞ 

2 ∞ 

3 ∞ 

4 ∞ 

5 ∞ 

6 ∞ 
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8 ∞ 

Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm

41

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 15 

4 18 

5 13

6 ∞ 

7 ∞ 

8 ∞ 

Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm

43

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}
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Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
• Θ 𝐸 log 𝑉
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have 
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the 
priority queue, its distance is that of the 
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first 

𝑘 nodes, then when we remove node 𝑘 + 1 we have 
found its shortest path
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the 
queue. What do we know bout 𝑎?
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!

49

𝑠

𝑥

𝑦

𝑎

𝑏



Definition: Tree

50

A connected graph with no cycles
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Note: A tree does not need 
a root, but they often do!



Definition: Tree
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A connected graph with no cycles
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Pick some arbitrary 
root node and 
rearrange tree 10

11

9

5

3

73

12

A

B

C

D

EF

G

IH



Definition: Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that 
doesn’t have any cycles is guaranteed 
to be a spanning tree!

Any set of V-1 edges that connects all 
the nodes in the graph is guaranteed to 
be a spanning tree!
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Pick some arbitrary 
root node and 
rearrange tree



Definition: Minimum Spanning Tree

53

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has 
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = 

𝑒∈𝐸𝑇

𝑤(𝑒)
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Definition: Cut

60

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆 
(or opposite), e.g. (𝐴, 𝐶) 

A set of edges 𝑅 Respects a cut 
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.

61



Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Proof of Kruskal’s Algorithm

66
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of 
edges 𝐴 that Kruskal’s has already selected to 
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge 
Kruskal’s selects to add next

We know that there cannot exist a path from 
𝐹 to G using only edges in 𝐴 because 𝑒 does not 
cause a cycle

We can cut the graph therefore into 2 disjoint 
sets: 
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut, 
so by the Cut Theorem, Kruskal’s is optimal!



Kruskal’s Algorithm Runtime

67

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set 
data structure (very fancy)

𝑂 𝐸 log 𝑉
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General MST Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Dijkstra’s Algorithm
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int primss(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Prims’s Algorithm
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Dijkstra’s Algorithm
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int primss(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.deleteMin();
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = weight(current,neighbor);
    if(distances[neighbor] == ∞){
     distances[neighbor] = new_dist;
     PQ.insert(new_dist, neighbor);
    }
    if (new_dist < distances[neighbor]){
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}

Prims’s Algorithm
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