CSE 332 Summer 2024
Lecture 13: Sorting

Nathan Brunelle
http://www.cs.uw.edu/332
Properties To Consider

• Worst case running time

• In place:
 • We only need to use the pre-existing array to do sorting
 • Constant extra space (only some additional variables needed)
 • *Selection Sort, Insertion Sort, Heap Sort*

• Adaptive
 • The running improves as the given list is closer to being sorted
 • It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
 • *Insertion Sort*

• Online
 • We can start sorting before we have the entire list.
 • *Insertion Sort*

• Stable
 • “Tied” elements keep their original order
Insertion Sort

- **Idea**: Maintain a sorted list prefix, extend that prefix by “inserting” the next element.
Heap Sort

- **Idea**: When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Divide And Conquer Sorting

• Divide and Conquer:
 • Recursive algorithm design technique
 • Solve a large problem by breaking it up into smaller versions of the same problem
Merge Sort

• **Base Case:**
 - If the list is of length 1 or 0, it’s already sorted, so just return it

• **Divide:**
 - Split the list into two “sublists” of (roughly) equal length

• **Conquer:**
 - Sort both lists recursively

• **Combine:**
 - **Merge** sorted sublists into one sorted list
Merge Sort In Action!

Sort between indices low and $high$

$$\begin{array}{ccccccccc}
5 & 8 & 2 & 9 & 4 & 1 & 3 & 7 \\
\end{array}$$

Base Case: if $low == high$ then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges $\left(low, \frac{low+high}{2} \right)$ and $\left(\frac{low+high}{2} + 1, high \right)$

$$\begin{array}{ccccccccc}
5 & 8 & 2 & 9 & 4 & 1 & 3 & 7 \\
\end{array}$$

$$\begin{array}{ccccccccc}
5 & 8 & 2 & 9 & 4 & 1 & 3 & 7 \\
\end{array}$$

After Recursion:

$$\begin{array}{ccccccccc}
2 & 5 & 8 & 9 & 1 & 3 & 4 & 7 \\
\end{array}$$
Create a new array to merge into, and 3 pointers/indices:

- **L_next**: the smallest “unmerged” thing on the left
- **R_next**: the smallest “unmerged” thing on the right
- **M_next**: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, then advance both M_next and whichever of L/R was used.
Properties of Merge Sort

• Worst Case Running time:
 • $\Theta(n \log n)$

• In-Place?
 • No!

• Adaptive?
 • No!

• Stable?
 • Yes!
 • As long as in a tie you always pick l_{next}
Quicksort

• Like Mergesort:
 • Divide and conquer
 • $O(n \log n)$ run time (kind of...)

• Unlike Mergesort:
 • Divide step is the “hard” part
 • *Typically* faster than Mergesort
Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- **Divide:** select pivot element p, $\text{Partition}(p)$
- **Conquer:** recursively sort left and right sublists
- **Combine:** Nothing!
Partition (Divide step)

Given: a list, a pivot p
Start: unordered list

Goal: All elements $< p$ on left, all $> p$ on right
Partition, Procedure

If \text{Begin} \text{ value} < p, \text{move} \text{Begin} \text{ right}

Else swap \text{Begin} \text{ value} with \text{End} \text{ value}, \text{move} \text{End} \text{ Left}

Done when \text{Begin} = \text{End}
Partition, Procedure

If Begin value < p, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End
Partition, Procedure

If **Begin** value < p, move **Begin** right
Else swap **Begin** value with **End** value, move **End** Left
Done when **Begin** = **End**

Case 1: meet at element < p
Swap p with pointer position (2 in this case)
Partition, Procedure

If Begin value < p, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End

Case 2: meet at element > p
Swap p with value to the left (2 in this case)
Partition Summary

1. Put p at beginning of list
2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
3. While $\text{Begin} < \text{End}$:
 1. If Begin value $< p$, move Begin right
 2. Else swap Begin value with End value, move End Left
4. If pointers meet at element $< p$: Swap p with pointer position
5. Else If pointers meet at element $> p$: Swap p with value to the left

Run time? $O(n)$
Conquer

Recursively sort Left and Right sublists

All elements < p

All elements > p

Exactly where it belongs!

Recursively sort Left and Right sublists
Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]

\[T(n) = O(n \log n) \]
Quicksort Run Time (Worst) \[T(n) = 1T(n-1) + n \]

If the pivot is always at the extreme:

```
1 2 3 4 5 6 7 8 9 10 11 12
```

Then we shorten by 1 each time

\[
T(n) = T(n-1) + n
\]

\[
T(n) = O(n^2)
\]
Quicksort Run Time (Worst)

\[T(n) = T(n - 1) + n \]

\[T(n) = 1 + 2 + 3 + \cdots + n \]

\[T(n) = \frac{n(n + 1)}{2} \]

\[T(n) = O(n^2) \]
Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>

So we shorten by 1 each time

\[T(n) = T(n - 1) + n \]

\[T(n) = O(n^2) \]
Good Pivot

• What makes a good Pivot?
 • Roughly even split between left and right
 • Ideally: median

• There are ways to find the median in linear time, but it’s complicated and slow and you’re better off using mergesort

• In Practice:
 • Pick a random value as a pivot
 • Pick the middle of 3 random values as the pivot
Properties of Quick Sort

• Worst Case Running time:
 • $\Theta(n^2)$
 • But $\Theta(n \log n)$ average! And typically faster than mergesort!

• In-Place?
 •Debatable

• Adaptive?
 • No!

• Stable?
 • No!
Improving Running time

• Recall our definition of the sorting problem:
 • Input:
 • An array A of items
 • A comparison function for these items
 • Given two items x and y, we can determine whether $x < y$, $x > y$, or $x = y$
 • Output:
 • A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
• Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.
• Observation:
 • Sometimes there might be ways to determine the position of values without comparisons!
“Linear Time” Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list

- The running time expression will always have a term other than the list’s length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values
BucketSort

• Assumes the array contains integers between 0 and $k - 1$ (or some other small range)

• Idea:
 • Use each value as an index into an array of size k
 • Add the item into the “bucket” at that index (e.g. linked list)
 • Get sorted array by “appending” all the buckets
BucketSort Running Time

• Create array of \(k \) buckets
 • Either \(\Theta(k) \) or \(\Theta(1) \) depending on some things...
• Insert all \(n \) things into buckets
 • \(\Theta(n) \)
• Empty buckets into an array
 • \(\Theta(n + k) \)
• Overall:
 • \(\Theta(n + k) \)
• When is this better than mergesort?
Properties of BucketSort

- In-Place?
 - No

- Adaptive?
 - No

- Stable?
 - Yes!
RadixSort

- **Radix**: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- **Idea**:
 - BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a “bucket” according to its 1’s place
RadixSort

- **Radix**: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

- **Idea:**
 - BucketSort by each digit, one at a time, from least significant to most significant

<table>
<thead>
<tr>
<th></th>
<th>800</th>
<th>801</th>
<th>401</th>
<th>101</th>
<th>901</th>
<th>121</th>
<th>512</th>
<th>103</th>
<th>323</th>
<th>823</th>
<th>113</th>
<th>255</th>
<th>555</th>
<th>245</th>
<th>018</th>
<th>999</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
<td>801</td>
<td>401</td>
<td>101</td>
<td>901</td>
<td>121</td>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
</tr>
<tr>
<td>1</td>
<td>801</td>
<td>401</td>
<td>101</td>
<td>901</td>
<td>121</td>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>401</td>
<td>101</td>
<td>901</td>
<td>121</td>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>901</td>
<td>121</td>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>121</td>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>512</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>103</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>323</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>823</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>113</td>
<td>255</td>
<td>555</td>
<td>245</td>
<td>018</td>
<td>999</td>
<td></td>
</tr>
</tbody>
</table>

Place each element into a “bucket” according to its 10’s place
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

<table>
<thead>
<tr>
<th>800</th>
<th>801</th>
<th>401</th>
<th>101</th>
<th>901</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>113</td>
<td>121</td>
<td>323</td>
<td>823</td>
<td></td>
</tr>
</tbody>
</table>

Place each element into a “bucket” according to its 100’s place
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

```
<table>
<thead>
<tr>
<th></th>
<th>018</th>
<th>101</th>
<th>103</th>
<th>113</th>
<th>121</th>
<th>245</th>
<th>255</th>
<th>323</th>
<th>401</th>
<th>512</th>
<th>555</th>
<th>800</th>
<th>801</th>
<th>823</th>
<th>901</th>
<th>999</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>8</td>
</tr>
</tbody>
</table>
```

Convert back into an array
RadixSort Running Time

• Suppose largest value is m
• Choose a radix (base of representation) b
• BucketSort all n things using b buckets
 • $\Theta(n + k)$
• Repeat once per each digit
 • $\log_b m$ iterations
• Overall:
 • $\Theta(n \log_b m + b \log_b m)$
• In practice, you can select the value of b to optimize running time
• When is this better than mergesort?