
CSE 332 Summer 2024
Lecture 13: Sorting

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Properties To Consider

• Worst case running time

• In place:
• We only need to use the pre-existing array to do sorting
• Constant extra space (only some additional variables needed)
• Selection Sort, Insertion Sort, Heap Sort

• Adaptive
• The running improves as the given list is closer to being sorted
• It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
• Insertion Sort

• Online
• We can start sorting before we have the entire list.
• Insertion Sort

• Stable
• “Tied” elements keep their original order

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix
by “inserting” the next element

3

3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

4

7

4 6

3 1 5 2

3 8 6 4 7 5 2 8 9 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

Divide And Conquer Sorting

• Divide and Conquer:
• Recursive algorithm design technique

• Solve a large problem by breaking it up into smaller versions of the same
problem

Merge Sort
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return it

• Divide:
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

6

5

5 8 2 9 4 1

5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9

Merge Sort In Action!

5 8 2 9 4 1 3 7

Sort between indices 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

Base Case: if 𝑙𝑜𝑤 == ℎ𝑖𝑔ℎ then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges 𝑙𝑜𝑤,
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
 and

𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
+ 1, ℎ𝑖𝑔ℎ

5 8 2 9 4 1 3 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

After Recursion:

Merge (the combine part)

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2

𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

Create a new array to merge into, and 3 pointers/indices:
• L_next: the smallest “unmerged” thing on the left
• R_next: the smallest “unmerged” thing on the right
• M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next,
then advance both M_next and whichever of L/R was used.

Properties of Merge Sort

• Worst Case Running time:
• Θ(𝑛 log 𝑛)

• In-Place?
• No!

• Adaptive?
• No!

• Stable?
• Yes!

• As long as in a tie you always pick l_next

Quicksort

• Like Mergesort:
• Divide and conquer

• 𝑂(𝑛 log 𝑛) run time (kind of…)

• Unlike Mergesort:
• Divide step is the “hard” part

• Typically faster than Mergesort

10

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

11

Partition (Divide step)

Given: a list, a pivot 𝑝

12

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Partition, Procedure

13

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12

14

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

15

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

16

8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of
the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

17

Run time? 𝑂(𝑛)

Conquer

Recursively sort Left and Right sublists

18

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Quicksort Run Time (Best)

Then we divide in half each time

19

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quicksort Run Time (Worst)

Then we shorten by 1 each time

20

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)

Quicksort Run Time (Worst)

21

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑂(𝑛2)

𝑛

𝑛 − 1

…

1

𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

1

𝑇 𝑛 = 1 + 2 + 3 + ⋯ + 𝑛

𝑇 𝑛 =
𝑛 𝑛 + 1

2

Quicksort on a (nearly) Sorted List

So we shorten by 1 each time

22

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

First element always yields unbalanced pivot

𝑇 𝑛 = 𝑂(𝑛2)

Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot

23

Properties of Quick Sort

• Worst Case Running time:
• Θ(𝑛2)

• But Θ(𝑛 log 𝑛) average! And typically faster than mergesort!

• In-Place?
• ….Debatable

• Adaptive?
• No!

• Stable?
• No!

Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without

comparisons!

“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3

2
2
2

0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3

BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?

Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes!

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15

RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏 𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏 𝑚 + 𝑏 log𝑏 𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?

	Slide 1: CSE 332 Summer 2024 Lecture 13: Sorting
	Slide 2: Properties To Consider
	Slide 3: Insertion Sort
	Slide 4: Heap Sort
	Slide 5: Divide And Conquer Sorting
	Slide 6: Merge Sort
	Slide 7: Merge Sort In Action!
	Slide 8: Merge (the combine part)
	Slide 9: Properties of Merge Sort
	Slide 10: Quicksort
	Slide 11: Quicksort
	Slide 12: Partition (Divide step)
	Slide 13: Partition, Procedure
	Slide 14
	Slide 15: Partition, Procedure
	Slide 16: Partition, Procedure
	Slide 17: Partition Summary
	Slide 18: Conquer
	Slide 19: Quicksort Run Time (Best)
	Slide 20: Quicksort Run Time (Worst)
	Slide 21: Quicksort Run Time (Worst)
	Slide 22: Quicksort on a (nearly) Sorted List
	Slide 23: Good Pivot
	Slide 24: Properties of Quick Sort
	Slide 25: Improving Running time
	Slide 26: “Linear Time” Sorting Algorithms
	Slide 27: BucketSort
	Slide 28: BucketSort Running Time
	Slide 29: Properties of BucketSort
	Slide 30: RadixSort
	Slide 31: RadixSort
	Slide 32: RadixSort
	Slide 33: RadixSort
	Slide 34: RadixSort Running Time

