CSE 332 Summer 2024
Lecture 13: Sorting

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Properties To Consider

Worst case running time

In place:
* We only need to use the pre-existing array to do sorting
* Constant extra space (only some additional variables needed)
» Selection Sort, Insertion Sort, Heap Sort

Adaptive
* The running improves as the given list is closer to being sorted
* |t should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
* Insertion Sort

Online
* We can start sorting before we have the entire list.
* [nsertion Sort

Stable

* “Tied” elements keep their original order

Insertion Sort

* |[dea: Maintain a sorted list prefix, extend that prefix
by “inserting” the next element

Sorted Prefix

11

N9
N
(@)}
[N

Sorted Prefix

11

I—
N9
N
(@)}
[N

Heap Sort
* |[dea: When “removing” an element from the heap,
swap it with the last item of the heap then “pretend”
the heap is one item shorter

3 8 6 4 7 5 2 8 9 [10

Divide And Conquer Sorting

* Divide and Conquer:
* Recursive algorithm design technique

* Solve a large problem by breaking it up into smaller versions of the same
problem

Merge Sort

* Base Case:
* |f the list is of length 1 or O, it’s already sorted, so just return it

5{8]2|[9f4]1]e* Divide:

 Split the list into two “sublists” of (roughly) equal length

215]8 11419 CCanuer:

* Sort both lists recursively

e Combine:

* Merge sorted sublists into one sorted list

Merge Sort In Action!

Sort between indices low and high

5 8 2 9 4 1 3 7

low high
Base Case: if low == high then that range is already sorted!

. . low+high low+high .

Divide and Conguer: Otherwise call mergesort on ranges (low, 0W+—lg) and (0W+—l‘g + 1, hlgh)

i
5 8 2 9 4 1 3 7
low low + high 1 [ow + high high
I—+1

1 2

After Recursion: 2 5 3 9 1 3 4 7

low high

Merge (the combine part)

2 5 8 9 @ 3

7
x Sl =S
& low low + ey low~high hiah
S oS ——+1 g

S
&

Q

Create a new array to merge into, and 3 pointers/indices:

* L _next: the smallest “unmerged” thing on the left

* R _next: the smallest “unmerged” thing on the right

* M _next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L next and R_next into M_next,
then advance both M_next and whichever of L/R was used.

Properties of Merge Sort

* Worst Case Running time:
* O(nlogn)

* In-Place?
* Nol!

e Adaptive?
* No!

e Stable?

* Yes!
* Aslong asin a tie you always pick | next

Quicksort

* Like Mergesort:
* Divide and conquer
* O(nlogn) run time (kind of...)

* Unlike Mergesort:
* Divide step is the “hard” part
* Typically faster than Mergesort

Quicksort

ldea: pick a pivot element, recursively sort two sublists around that
element

* Divide: select pivot element p, Partition
* Conquer: recursively sort left and right sublists

* Combine: Nothing!

S—

11

Partition (Divide step)

Given: a list, a pivot p
Start: unordered list

. 5 7 3 (12 10| 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

\—,
/(5731246H

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done whe = End

13

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

o {4

Lo-i’ ©o

14

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

T EEEE

Case 1: meet at element

Swap p with (2 in this case)

el

2 5 7 3 6 4 1

15

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left

Donewmk;éﬁd
R

Case 2: meet at element > p

Swap p with (2 in this case)

el Tale

2 5 7 3 6 4 1

16

Partition Summary O(/})

Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the end of
the list

3. While < End:

1. |If value < p, move right

2. Else swap value with End value, move End Left
4. If pointers meet at element : Swap » with

5. Else If pointers meet at element > p: Swap p with

Run time? 0(n)

7

Cong

uer
/
2 | 5

|
All elements < p All elements > p

Exactly where it belongs!

Recursively sort and Right sublists

18

Quicksort Run Time (Best TCW—’¥7(& 7 *7

If the pivot is always the 1
ys
2 5 1 3 /§__

T B [[+ |- e

Then we divide in half each time

T(n) = 2T(§)+n
T(n) = 0(nlogn)

19

Quicksort Run Time (Worst) T(/Q) \\[(h_/%z//)

If the pivot is always at the extreme:

o2]s]sle]e] 7]]w]o[u]n
Then we shorten by 1 each time
.

Tm)=Tn—-1)+n

T(n) = 0(n%)

20

Quicksort Run Time (Worst)
Tm)=Tn—-1)+n

n—1
| . T(n)=142+3+-+n

n—2
. T'(n) = n(n2+ 1)

- T(n) = 0(n%)

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

s fefslef7]e o frfu]n

So we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n%)

22

Good Pivot

 What makes a good Pivot?
* Roughly even split between left and right
* ldeally: median

* There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

* |[n Practice:
* Pick a random value as a pivot

Tee—

* Pick the middle of 3 random values as the pivot

—————

Properties of Quick Sort

* Worst Case Running time:
« O(n?)
* But O(nlogn) average! And typically faster than mergesort!
* In-Place?
Debatable
e Adaptive?
* No!
 Stable?
* No!

Improving Running time

* Recall our definition of the sorting problem:
* Input:
* An array A of items

* A comparison function for these items
* Given two items x and y, we can determine whetherx <y, x > y,orx =y

* Output:
A permutation of A such thatif i < j then A[i] < A[J]

* Under this definition, it is impossible to write an algorithm faster than
nlogn asymptotically.

e Observation:

* Sometimes there might be ways to determine the position of values without
comparisons!

“Linear Time” Sorting Algorithms

* Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)

* Examples:
* The list contains only positive integers less than k

—

* The number of distinct values in the list is much smaller than the length of the list

* The running time expression will always have a term other than the
list’s length to account for this assumption

e Examples:
* Running time might be 6)(:)11) where k is the range/count of values

BucketSort

e Assumes the array contains integers between 0 and k — 1 (or some
other small range)

e |dea:

* Use each value as an index into an array of size k
* Add the item into the “bucket” at that index (e.g. linked list)
* Get sorted array by “appending” all the buckets

> ./
¢//J /4> [

N

123
oOjof1)2(1|3(0(2]0 o(ojojoloj1j12|2
123

O |0 O o o o

BucketSort Running Time

* Create array of k buckets
* Either (k) or ©(1) depending on some things...

* Insert all n things into buckets

com)

. Emﬁ buckets into an array
y +
070
e Overall:
e O(n+ k)
 When is this better than mergesort?

Properties of BucketSort

* In-Place?
* No

e Adaptive?

* No
"

e Stable?
* Yes!

—————

RadixSort

e Radix: The base of a number system

 We'll use base 10, most implementations wi

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant

) o 2

/)

L &2

se larger bases —

103 | 801 | 401 | 323 | 255 | 823|999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121
o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415”
801 103
Place each element into o1 323 22>
. 800 | 101 | 512 | .°7 555 018 | 999
a “bucket” according to 901 113 245
its 1’s place 121
o 1 2 3 4 5 6 7 8 9

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
801
401 ;gg 255
800 | 101 | 512 555 018 | 999
823
901 245
191 113
800
o 1 2 3 4 5 6 7 8 9
sl ||
101 | 113323 245 | .. 999
Place each element into 001 | 018 | 823
a “bucket” according to 103

its 10’s place o 1 2 3 4 5 6 7 8 9

e Radix: The base of a number system

RadixSort

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
800
801
401 >1271121 255
113 | 323 245 999
101 018 | 823 =5
901
103
0 1 2 3 4 5 6 7 9

Place each element into
a “bucket” according to
its 100’s place

101

800
103 | 245 512 901
018 113 | 255 3231401 555 Zg; 999
121
0 1 2 3 £ 5 8 9

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
101
800
103 | 245 512 901
0181113 | 255 | 323 | 401 | 555 :gg 999 Convert back into an array
121

018 | 811|103 | 113 {121 | 245 | 255|323 (401|512 |555|800 (801|823 901|999

RadixSort Running Time /) o 4

e Suppose largest value is m

—_—

* Choose a radix (base of representation) b / W)
* BucketSort all n things using b buckets ﬁl{/ Sj A
.+ O(n + k) / \X

* Repeat once per each digit
* log, m iterations

* Overall:
* O(nlog, m + blog, m)

* |n practice, you can select the value of b to optimize running time
* When is this better than mergesort?

	Slide 1: CSE 332 Summer 2024 Lecture 13: Sorting
	Slide 2: Properties To Consider
	Slide 3: Insertion Sort
	Slide 4: Heap Sort
	Slide 5: Divide And Conquer Sorting
	Slide 6: Merge Sort
	Slide 7: Merge Sort In Action!
	Slide 8: Merge (the combine part)
	Slide 9: Properties of Merge Sort
	Slide 10: Quicksort
	Slide 11: Quicksort
	Slide 12: Partition (Divide step)
	Slide 13: Partition, Procedure
	Slide 14
	Slide 15: Partition, Procedure
	Slide 16: Partition, Procedure
	Slide 17: Partition Summary
	Slide 18: Conquer
	Slide 19: Quicksort Run Time (Best)
	Slide 20: Quicksort Run Time (Worst)
	Slide 21: Quicksort Run Time (Worst)
	Slide 22: Quicksort on a (nearly) Sorted List
	Slide 23: Good Pivot
	Slide 24: Properties of Quick Sort
	Slide 25: Improving Running time
	Slide 26: “Linear Time” Sorting Algorithms
	Slide 27: BucketSort
	Slide 28: BucketSort Running Time
	Slide 29: Properties of BucketSort
	Slide 30: RadixSort
	Slide 31: RadixSort
	Slide 32: RadixSort
	Slide 33: RadixSort
	Slide 34: RadixSort Running Time

