CSE 332 Summer 2024 Lecture 12: Sorting

Nathan Brunelle

http://www.cs.uw.edu/332

Properties To Consider

- Worst case running time
- In place:
 - We only need to use the pre-existing array to do sorting
 - Constant extra space (only some additional variables needed)
 - Selection Sort, Insertion Sort, Heap Sort
- Adaptive
 - The running improves as the given list is closer to being sorted
 - It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted
 - Insertion Sort
- Online
 - We can start sorting before we have the entire list.
 - Insertion Sort
- Stable
 - "Tied" elements keep their original order

Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Heap Sort

 Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

Divide And Conquer Sorting

- Divide and Conquer:
 - Recursive algorithm design technique
 - Solve a large problem by breaking it up into smaller versions of the same problem

Merge Sort

5

- Base Case:
 - If the list is of length 1 or 0, it's already sorted, so just return it

- Divide:
 - Split the list into two "sublists" of (roughly) equal length

Sort both lists recursively

- Combine:
 - Merge sorted sublists into one sorted list

Merge Sort In Action!

Sort between indices *low* and *high*

Base Case: if low == high then that range is already sorted!

low

Divide and Conquer: Otherwise call mergesort on ranges $(low, \frac{low+high}{2})$ and $(\frac{low+high}{2} + 1, high)$

5 3 9 $\frac{low + high}{2}$ $\frac{low + high}{2} + 1$ high low

After Recursion:

2 9 1 4 high

Merge (the combine part)

Create a new array to merge into, and 3 pointers/indices:

- L_next: the smallest "unmerged" thing on the left
- R_next: the smallest "unmerged" thing on the right
- M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, then advance both M_next and whichever of L/R was used.

Properties of Merge Sort

- Worst Case Running time:
 - $\Theta(n \log n)$
- In-Place?
 - No!
- Adaptive?
 - No!
- Stable?
 - Yes!
 - As long as in a tie you always pick l_next

Quicksort

- Like Mergesort:
 - Divide and conquer
 - $O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
 - Divide step is the "hard" part
 - Typically faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all > p on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

If Begin value < p, move Begin right Else swap Begin value with End value, move End Left Done when Begin = End

Case 1: meet at element < p

Swap p with pointer position (2 in this case)

If Begin value < p, move Begin right Else swap Begin value with End value, move End Left Done when Begin = End

Case 2: meet at element > p

Swap p with value to the left (2 in this case)

Partition Summary

- 1. Put p at beginning of list
- 2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element < p: Swap p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left

Conquer

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

Then we shorten by 1 each time

$$T(n) = T(n-1) + n$$

$$T(n) = O(n^2)$$

Quicksort Run Time (Worst)

$$T(n) = T(n-1) + n$$

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

$$T(n) = T(n-1) + n$$

$$T(n) = O(n^2)$$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
 - Pick a random value as a pivot
 - Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
 - $\Theta(n^2)$
 - But $\Theta(n \log n)$ average! And typically faster than mergesort!
- In-Place?
 -Debatable
- Adaptive?
 - No!
- Stable?
 - No!

Improving Running time

- Recall our definition of the sorting problem:
 - Input:
 - An array *A* of items
 - A comparison function for these items
 - Given two items x and y, we can determine whether x < y, x > y, or x = y
 - Output:
 - A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.
- Observation:
 - Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and k-1 (or some other small range)

- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the "bucket" at that index (e.g. linked list)
 - Get sorted array by "appending" all the buckets

BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a "bucket" according to its 10's place

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	-

RadixSort Running Time

- Suppose largest value is *m*
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?