CSE 332 Summer 2024
Lecture 12: Sorting

Nathan Brunelle

http://www.cs.uw.edu/332
Selection Sort

Idea: Find the next smallest element, swap it into the next index in the array

```
1 2 3 4 5 6 10 8 7 9 12 11
```

Already In Position

```
1 2 3 4 5 6 7 8 10 9 12 11
```
Selection Sort

• Swap the thing at index 0 with the smallest thing in the array
• Swap the thing at index 1 with the smallest thing after index 0
• ...
• Swap the thing at index \(i\) with the smallest thing after index \(i-1\)

```java
for (i=0; i<a.length; i++){
    smallest = i;
    for (j=i; j<a.length; j++){
        if (a[j]<a[smallest]) { smallest=j; }
    }
    temp = a[i];
    a[i] = a[smallest];
    a[smallest] = a[i];
}
```

Running Time:
- Worst Case: \(\Theta(n^2)\)
- Best Case: \(\Theta(n)\)
Insertion Sort

• **Idea**: Maintain a *sorted list prefix*, extend that prefix by “inserting” the next element.
Insertion Sort
• If the items at index 0 and 1 are out of order, swap them
• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger
• ...
• Keep swapping the item at index \(i \) with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){
 prev = i-1;
 while(a[i] < a[prev] && prev > -1){
 temp = a[i];
 a[i] = a[prev];
 a[prev] = a[i];
 i--;
 prev--;
 }
}

Running Time:
Worst Case: \(\Theta(n^2) \)
Best Case: \(\Theta(n) \)
Aside: Bubble Sort – we won’t cover it

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" – Donald Knuth, The Art of Computer Programming
Properties

• Worst case running time
 • n^2

• In place:
 • We only need to use the pre-existing array to do sorting
 • Constant extra space (only some additional variables needed)

• Adaptive
 • The running improves as the given list is closer to being sorted
 • It should be linear time for a pre-sorted list, and nearly linear time if the list is nearly sorted

• Online
 • We can start sorting before we have the entire list.
Heap Sort

- **Idea**: Build a maxHeap, repeatedly delete the max element from the heap to build sorted list Right-to-Left

```
10 9 6 8 7 5 2 4 1 3
```

Max Heap Property: Each node is larger than its children
Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

• **Remove the Max element (i.e. the root) from the Heap:** replace with last element, call `percolateDown(root)`

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree.
Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

• Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Percolate Down(node): if node satisfies heap property, done. Else swap with largest child and repeat on that subtree
Heap Sort

• Build a heap
 • $O(n)$
• Call extract
 • $O(\log n)$ each
• Put that at the end of the array
 • $O(1)$

```java
myHeap = buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    item = myHeap.deleteMax();
    a[i] = item;
}
```

Running Time:
- Worst Case: $\Theta(n \log n)$
- Best Case: $\Theta(n \log n)$
“In Place” Sorting Algorithm

• A sorting algorithm which requires no extra data structures
• Idea: It sorts items just by swapping things in the same array given
• Definition: it only uses Θ(1) extra space

• Selection sort: In Place!
• Insertion sort: In Place!
• Heap sort: Not In Place!
 • But we can fix that!
In Place Heap Sort

- **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

Idea: When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea:** When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea**: When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.
Heap Sort

- **Idea**: When “removing” an element from the heap, swap it with the last item of the heap then “pretend” the heap is one item shorter.

```
3  8  6  4  7  5  2  8  9  10
0  1  2  3  4  5  6  7  8  9
```

```
7
  / \
 4   6
 /   / \
3   1  5
    1   
   3

0

2
  2
  5
  6
```
In Place Heap Sort

• Build a heap using the same array (Floyd’s build heap algorithm works)
• Call deleteMax
• Put that at the end of the array

Running Time:
Worst Case: $\Theta(n \log n)$
Best Case: $\Theta(n \log n)$
Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

```java
buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```
uf Divide And Conquer Sorting

• Divide and Conquer:
 • Recursive algorithm design technique
 • Solve a large problem by breaking it up into smaller versions of the same problem
Divide and Conquer

- **Base Case:**
 - If the problem is “small” then solve directly and return

- **Divide:**
 - Break the problem into subproblem(s), each smaller instances

- **Conquer:**
 - Solve subproblem(s) recursively

- **Combine:**
 - Use solutions to subproblems to solve original problem
def my_DandC(problem):
 // Base Case
 if (problem.size() <= small_value):
 return solve(problem); // directly solve (e.g., brute force)
 }
 // Divide
 List subproblems = divide(problem);
 // Conquer
 solutions = new List();
 for (sub : subproblems){
 subsolution = my_DandC(sub);
 solutions.add(subsolution);
 }
 // Combine
 return combine(solutions);
Merge Sort

• **Base Case:**
 - If the list is of length 1 or 0, it’s already sorted, so just return it

5 8 2 9 4 1

• **Divide:**
 - Split the list into two “sublists” of (roughly) equal length

2 5 8 1 4 9

• **Conquer:**
 - Sort both lists recursively

• **Combine:**
 - **Merge** sorted sublists into one sorted list

1 2 4 5 8 9
Merge Sort In Action!

Sort between indices low and $high$

Base Case: if $low == high$ then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges $\left(low, \frac{low + high}{2} \right)$ and $\left(\frac{low + high}{2} + 1, high \right)$

After Recursion:
Create a new array to merge into, and 3 pointers/indices:

- **L_next**: the smallest “unmerged” thing on the left
- **R_next**: the smallest “unmerged” thing on the right
- **M_next**: where the next smallest thing goes in the merged array

One-by-one: put the smallest of **L_next** and **R_next** into **M_next**, then advance both **M_next** and whichever of L/R was used.
Merge Sort Pseudocode

```java
void mergesort(myArray){
    ms_helper(myArray, 0, myArray.length());
}

void mshelper(myArray, low, high){
    if (low == high){return;}  // Base Case
    mid = (low+high)/2;
    ms_helper(low, mid);
    ms_helper(mid+1, high);
    merge(myArray, low, mid, high);
}
```
void merge(myArray, low, mid, high) {
 merged = new int[high-low+1]; // or whatever type is in myArray
 l_next = low;
 r_next = high;
 m_next = 0;
 while (l_next <= mid && r_next <= high) {
 if (myArray[l_next] <= myArray[r_next]) {
 merged[m_next++] = myArray[l_next++];
 } else {
 merged[m_next++] = myArray[r_next++];
 }
 }
 while (l_next <= mid) {
 merged[m_next++] = myArray[l_next++];
 }
 while (r_next <= high) {
 merged[m_next++] = myArray[r_next++];
 }
 for (i = 0; i <= merged.length; i++) {
 myArray[i+low] = merged[i];
 }
}
Analyzing Merge Sort

1. Identify time required to Divide and Combine
2. Identify all subproblems and their sizes
3. Use recurrence relation to express recursive running time
4. Solve and express running time asymptotically

• **Divide:** 0 comparisons
• **Conquer:** recursively sort two lists of size $\frac{n}{2}$
• **Combine:** n comparisons
• **Recurrence:**

$$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$

$$\Rightarrow T(n) = 2T\left(\frac{n}{2}\right) + n$$
Red box represents a problem instance

Blue value represents time spent at that level of recursion

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]

\(\Rightarrow n \) comparisons / level

\(\log_2 n \) levels of recursion

\[T(n) = \sum_{i=1}^{\log_2 n} n = n \log_2 n \]
Properties of Merge Sort

• Worst Case Running time:
 • $\Theta(n \log n)

• In-Place?
 • No!

• Adaptive?
 • No!

• Stable?
 • Yes!
 • As long as in a tie you always pick l_next
Quicksort

• Like Mergesort:
 • Divide and conquer
 • $O(n \log n)$ run time (kind of…)

• Unlike Mergesort:
 • Divide step is the “hard” part
 • Typically faster than Mergesort
Quicksort

Idea: pick a \textit{pivot} element, recursively sort two sublists around that element

• \textbf{Divide}: select \textit{pivot} element p, \textit{Partition(p)}

• \textbf{Conquer}: recursively sort left and right sublists

• \textbf{Combine}: Nothing!
Partition (Divide step)

Given: a list, a pivot p
Start: unordered list

Goal: All elements $< p$ on left, all $> p$ on right
Partition, Procedure

If \textit{Begin} value $< p$, move \textit{Begin} right
Else swap \textit{Begin} value with \textit{End} value, move \textit{End} Left
Done when \textit{Begin} = \textit{End}
Partition, Procedure

If **Begin** value $< p$, move **Begin** right

Else swap **Begin** value with **End** value, move **End** Left

Done when **Begin** = **End**

![Partition Procedure Diagram]

<table>
<thead>
<tr>
<th>8</th>
<th>5</th>
<th>7</th>
<th>3</th>
<th>11</th>
<th>10</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>9</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Partition, Procedure

If \(\text{Begin value} < p \), move \text{Begin} right

Else swap \text{Begin} value with \text{End} value, move \text{End} Left

Done when \text{Begin} = \text{End}

Case 1: meet at element \(< p \)

Swap \(p \) with pointer position (2 in this case)
Partition, Procedure

If \(\text{Begin value} < p \), move \(\text{Begin} \) right
Else swap \(\text{Begin} \) value with \(\text{End} \) value, move \(\text{End} \) Left
Done when \(\text{Begin} = \text{End} \)

Case 2: meet at element \(> p \)

Swap \(p \) with value to the left (2 in this case)
Partition Summary

1. Put p at beginning of list
2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
3. While Begin < End:
 1. If Begin value < p, move Begin right
 2. Else swap Begin value with End value, move End Left
4. If pointers meet at element < p: Swap p with pointer position
5. Else If pointers meet at element > p: Swap p with value to the left

Run time? $O(n)$
Conquer

Recursively sort Left and Right sublists

All elements < \(p \)

All elements > \(p \)

Exactly where it belongs!
Quicksort Run Time (Best)

If the pivot is always the median:

2 5 1 3 6 4 7 8 10 9 11 12

Then we divide in half each time

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]

\[T(n) = O(n \log n) \]
Quicksort Run Time (Worst)

If the pivot is always at the extreme:

\[
T(n) = T(n - 1) + n
\]

Then we shorten by 1 each time

\[
T(n) = O(n^2)
\]
Quicksort Run Time (Worst)

\[T(n) = T(n - 1) + n \]

\[T(n) = 1 + 2 + 3 + \cdots + n \]

\[T(n) = \frac{n(n + 1)}{2} \]

\[T(n) = O(n^2) \]
Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

\[T(n) = T(n - 1) + n \]

\[T(n) = O(n^2) \]
Good Pivot

• What makes a good Pivot?
 • Roughly even split between left and right
 • Ideally: median

• There are ways to find the median in linear time, but it’s complicated and slow and you’re better off using mergesort

• In Practice:
 • Pick a random value as a pivot
 • Pick the middle of 3 random values as the pivot
Properties of Quick Sort

• Worst Case Running time:
 • $\Theta(n^2)$
 • But $\Theta(n \log n)$ average! And typically faster than mergesort!

• In-Place?
 •Debatable

• Adaptive?
 • No!

• Stable?
 • No!
Improving Running time

• Recall our definition of the sorting problem:
 • Input:
 • An array A of items
 • A comparison function for these items
 • Given two items x and y, we can determine whether $x < y$, $x > y$, or $x = y$
 • Output:
 • A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$

• Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.

• Observation:
 • Sometimes there might be ways to determine the position of values without comparisons!
“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 • Examples:
 • The list contains only positive integers less than k
 • The number of distinct values in the list is much smaller than the length of the list
• The running time expression will always have a term other than the list’s length to account for this assumption
 • Examples:
 • Running time might be $\Theta(k \cdot n)$ where k is the range/count of values
BucketSort

- Assumes the array contains integers between 0 and $k - 1$ (or some other small range)

- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the “bucket” at that index (e.g. linked list)
 - Get sorted array by “appending” all the buckets
BucketSort Running Time

• Create array of \(k \) buckets
 • Either \(\Theta(k) \) or \(\Theta(1) \) depending on some things...
• Insert all \(n \) things into buckets
 • \(\Theta(n) \)
• Empty buckets into an array
 • \(\Theta(n + k) \)
• Overall:
 • \(\Theta(n + k) \)
• When is this better than mergesort?
Properties of BucketSort

• In-Place?
 • No

• Adaptive?
 • No

• Stable?
 • Yes!
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a “bucket” according to its 1’s place
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

<table>
<thead>
<tr>
<th>800</th>
<th>801</th>
<th>401</th>
<th>101</th>
<th>901</th>
<th>121</th>
<th>512</th>
<th>103</th>
<th>323</th>
<th>823</th>
<th>113</th>
<th>255</th>
<th>555</th>
<th>245</th>
<th>018</th>
<th>999</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Place each element into a “bucket” according to its 10’s place
RadixSort

• Radix: The base of a number system
 • We’ll use base 10, most implementations will use larger bases

• Idea:
 • BucketSort by each digit, one at a time, from least significant to most significant

Place each element into a “bucket” according to its 100’s place
RadixSort

- Radix: The base of a number system
 - We’ll use base 10, most implementations will use larger bases

Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

018	101	103	113	121	245	255	323	401	512	555	800	801	823	901	999	
0	1	2	3	4	5	6	7	8	9							

Convert back into an array

| 018 | 811 | 103 | 113 | 121 | 245 | 255 | 323 | 401 | 512 | 555 | 800 | 801 | 823 | 901 | 999 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
RadixSort Running Time

• Suppose largest value is m
• Choose a radix (base of representation) b
• BucketSort all n things using b buckets
 • $\Theta(n + k)$
• Repeat once per each digit
 • $\log_b m$ iterations
• Overall:
 • $\Theta(n \log_b m + b \log_b m)$
• In practice, you can select the value of b to optimize running time
• When is this better than mergesort?