
University of Washington CSE 332 25 July 2024

Midterm Exam
Summer 2024

Name Answer Key

Net ID (@uw.edu)

Academic Integrity: You may not use any resources on this exam except for your one-page
(front and back) reference sheet, writing instruments, your own brain, and the exam packet
itself. This exam is otherwise closed notes, closed neighbor, closed electronic devices, etc..
The last two pages of this exam provide a list of potentially helpful identities as well as
room for scratch work (respectively). Please detach those last two pages from the exam
packet. No markings on these last two pages will be graded. Your answer for each question
must fit in the answer box provided.

Instructions: Before you begin, Put your name and UW Net ID at the top of this
page. Make sure that your name and ID are LEGIBLE. Please ensure that all of your
answers appear within the boxed area provided.

Section Max Points
ADTs and Data Structures 11

Asymptotic Analysis 20
Heaps 15

AVL Trees 15
Algorithms 4

Extra Credit (+2)
Total 65

CSE 332 2 Midterm Exam

Section 1: ADTs and Data Structures
(5 pts)Question 1: ADT vs Data Structure
For each of the following, indicate whether it is a Data Structure or an Abstract Data Type by writing DS
or ADT (respectively) in the box provided.

1. Binary Search Tree: DS

2. Heap: DS

3. Queue: ADT

4. Dictionary: ADT

5. AVL Tree: DS

(6 pts)Question 2: Name that ADT
Write the name of the ADT that would be most appropriate for each use case below. Please name only
ADTs that we have discussed in this quarter thus far.

1. There’s a long line for seeking help in office hours, and we want to help students in the order that they’ve
arrived.

Queue

2. There’s a long line for seeking help in office hours, and we want to help students in order of who
has received the most hearts on Ed (keeping in mind students may gain hearts as they’re waiting).

Priority Queue

3. We want to track and update the number of times that each student has come to office hours before.

dictionary

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 3 Midterm Exam

Section 2: Asymptotic Analysis
(4 pts)Question 3: Asymptotic Analysis of Code
Give a simplified Θ bound on the best and worst case running times for each method below. (By simplified
we mean it should contain no constant coefficients or non-dominant terms.)

Each method adds all contents of the given array to a different data structure. Assume that all items in the
array are distinct (no item appears multiples times). The comment beside each insert operation is included
as a reminder of the order of the parameters.

// add into an AVL tree
public void addAVL(int[] arr){

AVLTree<Integer> avl = new AVLTree<>();
for(int i = 0; i < arr.length; i++){

avl.insert(arr[i], i); // key, value
}

}

// add into a Binary Search Tree
public void addBST(int[] arr){

BSearchTree<Integer> bst = new BSearchTree<>();
for(int i = 0; i < arr.length; i++){

bst.insert(arr[i], i); // key, value
}

}

// add into a Binary Min Heap
public void addHeap(int[] arr){

MinHeap<Integer> heap = new MinHeap<>();
for(int i = 0; i < arr.length; i++){

heap.insert(arr[i], i); // value, priority
}

}

// add into a Binary Max Heap
public void addHeap(int[] arr){

MaxHeap<Integer> heap = new MaxHeap<>();
for(int i = 0; i < arr.length; i++){

heap.insert(arr[i], i); // value, priority
}

}

1. Best Case: Θ(n log n)

2. Worst Case: Θ(n log n)

3. Best Case: Θ(n log n)

4. Worst Case: Θ(n2)

5. Best Case: Θ(n)

6. Worst Case: Θ(n)

7. Best Case: Θ(n log n)

8. Worst Case: Θ(n log n)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 4 Midterm Exam

(5 pts)Question 4: Always True, Sometimes True, Never True
For each statement below, indicate whether it is always true, sometimes true (meaning there are both true
cases and false cases), or never true (meaning it is always false) by writing the letter corresponding with
your selection in the box provided. You should assume that all functions’ domains are the natural numbers
and ranges are real numbers greater than 1. Assume f(n) ∈ O(g(n)).

1. f(n) ∈ Θ(n · f(n))

A. Always True.
B. Sometimes True.
C. Never True.

2. f(n) ∈ O(2n)

A. Always True.
B. Sometimes True.
C. Never True.

3. f(n) ∈ Θ(f(n) + g(n))

A. Always True.
B. Sometimes True.
C. Never True.

4. g(n) ∈ Θ(f(n) + g(n))

A. Always True.
B. Sometimes True.
C. Never True.

5. f(n) ∈ O(g(n) − f(n))

A. Always True.
B. Sometimes True.
C. Never True.

C

B

B

A

B

(2 pts)Question 5: Worst Case and Ω
Which of the following statements would imply that an algorithm’s worst-case running time was in Ω(n).
A. For every input size, there is at least one case where the algorithm

does at least a constant number of operations per value in that input.

B. For at least one input size, there is at least one case where the algorithm
does at least a constant number of operations per value in that input.

C. For every input size, there is at least one case where the algorithm
does at most a constant number of operations per value in that input.

D. For at least one input size, there is at least one case where the algorithm
does at most a constant number of operations per value in that input.

A

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 5 Midterm Exam

(4 pts)Question 6: Tree Method
Suppose that the running time of an algorithm is expressed by the recurrence relation:

T (n) = 3 · T

(
n

2

)
+ n2

T (1) = 1

For the following questions, use the tree method to solve the recurrence relation. We have broken up the
process into subquestions to guide you through your answer. You may assume that n is always a power of 2.

1) Sketch the tree in space below. Include at least the first 3 levels of the tree (i.e. the root, its children,
and its grandchildren), make clear what the input size is for each recursive call as well as the work per
call.

...

2) Indicate exactly the total amount of work done at level i of the tree (define the root to be level 0).
Include all constants and non-dominant terms.

(3
4)in2

3) Indicate the level of the tree in which the base cases occur.

log2(n)

4) Give a simplified Θ bound on the solution. When simplified, n should not appear in any exponents.

Θ (n2)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 6 Midterm Exam

(5 pts)Question 7: Big O Proof
Show that 2n(2n+1)

2 belongs to O(n2).

Let c = 3 and n0 = 1.
We seek to show that 2n(2n+1)

2 ≤ 2 · n2 for all n > 1.
We begin by doing some arithmetic on the inequality:

2n(2n + 1)
2 ≤ 3 · n2

2n(2n + 1) ≤ 6 · n2

4n2 + 2n ≤ 6 · n2

From here, because n2 > n for every choice of n > 1, we know that 2n2 > 2n, and so
4n2 + 2n2 > 4n2 + 2n, therefore we can conclude that 4n2 + 2n ≤ 6 · n2.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 7 Midterm Exam

Section 3: Heaps
The next three questions relate to the given binary min heap.

(4 pts)Question 8: True or False
Suppose we added a new node containing x as the right child of the node containing 40. Supposing this
heap is still valid, consider each statement below. If that statement guaranteed to be true, then write
"True", otherwise write "False".

1. x ≥ 65

False

2. x ≥ 40

True

3. x ≤ 45

False

4. x > 20

True

(2 pts)Question 9: Array Representation
Give the array representation of the original heap given above. Place the root at index 0 of the array.

20 25 30 35 40 45 50 55 60 65

(4 pts)Question 10: Extract
Perform an extract operation on the heap and give the array representation of the resulting heap. Place the
root at index 0 of the array.

25 35 30 55 40 45 50 65 60

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 8 Midterm Exam

(5 pts)Question 11: Binary Heap Math
Answer each question below as it relates to a 0-indexed binary min heap containing 45 items. 0-indexed
means the root of the tree is at index 0 in its array representation.

1. What is the height of the tree (recall that a one-node tree has height 0)?

5

2. How many items are on the last level of the tree?

14

3. If we call percolate up on index 8, which index will we compare to?

3

4. If we call percolate down on index 8, which two indices will we compare to?

17 and 18

5. What is the smallest index which contains a leaf?

22

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 9 Midterm Exam

Section 4: AVL Trees
(10 pts)Question 12: Rotations
Answer the following questions about the AVL Tree below. Each question should be considered completely
independently (i.e. "reset" to the image between questions)

1. Give an integer key which, when inserted into the given AVL tree, would cause a double rotation.

12 or 18

2. Give the smallest integer key which, when given as the argument to insert, would not result in any
rotation.

11

3. If we insert 10 into the tree, which node will become the deepest unbalanced node (from which we will
do a rotation)?

13

4. If we insert 10 into the tree, what type of rotation will we do (Left, Right, Left-Right, or Right-Left)?

Right

5. Give the shortest sequence of keys which, when inserted, would cause in a single left rotation.

any pair > 27 or > 23 and < 25

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 10 Midterm Exam

(2 pts)Question 13: Structure property
The AVL structure property requires that, for every node in the tree, the heights of its left and right
subtrees differ by at most 1. Why do we not require the subtrees’ heights to exactly match? Answer using
1-2 sentences.

Some sizes of the data structure will be impossible.

(3 pts)Question 14: Structure Property
Using 1-2 sentences, describe, at an intuitive level, how the AVL tree structure property improves its
worse-case running time.

By keeping subtrees close to balanced, we have similar number of nodes in both brances of
every node.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 11 Midterm Exam

Section 5: Algorithms
(4 pts)Question 15: Find Next Largest
For each data structure below, describe an algorithm which, when given an item that is currently in the
data structure, finds the next largest item in the data structure. Assume that the item given is indeed
already present in the data structure.

By next largest item we mean either the item with the smallest key larger than the one given for dictionaries,
or the smallest priority that is larger than the one given for priority queues (e.g. min heaps keep the
smallest priorities near the root). Make the algorithm as efficient as you can (asymptotically). You may
assume the size of the data structure is greater than 1.

1. Binary Min Heap:

You cannot do asymptotically better than simply scanning through the entire array and
saving the smallest thing larger than the given.

Asymptotic Running Time: Θ (n).

2. AVL Tree:

The answer will be one of:
– An ancestor of the key

– The left-most item in the key’s right subtree
Therefore the follow algorithm works: Do a find on the key, remembering the smallest item
larger than the key on the way down. If the node containing the key has a right child, find
the left-most item in the right subtree. Return whichever of those two is smallest.

Asymptotic Running Time: Θ (log(n)).

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 12 Midterm Exam

Extra Credit
(2 pts)Question Extra Credit: Before
In the space below, draw a picture of how you were feeling coming into this exam.

:(

(2 pts)Question Extra Credit: After
In the space below, draw a picture of how you were feeling coming into this exam.

:)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 13 Midterm Exam

Scratch Work
Nothing written on this page will be graded.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 14 Midterm Exam

Identities
Nothing written on this page will be graded.

Summations

∞∑
i=0

xi = 1
1 − x

for |x|< 1

n−1∑
i=0

=
i=1∑
n

= n

n∑
i=0

i = 0 +
i=1∑
n

i = n(n + 1)
2

n∑
i=1

i2 = n(n + 1)(2n + 1)
6 = n3

3 + n2

2 + n

6
n∑

i=0
i3 =

(
n(n + 1)

2

)2
= n4

4 + n3

2 + n2

4
n−1∑
i=0

xi = 1 − xn

1 − x

n−1∑
i=0

1
2i

= 2 − 1
2n−1

Logs

xlogx(n) = n

loga(bc) = c loga(b)
alogb(c) = clogb(a)

logb(a) = logd(a)
logd(b)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

