
University of Washington CSE 332 14 March 2024

Final Exam
Winter 2024

Name Answer Key

Net ID (@uw.edu)

Academic Integrity: You may not use any resources on this exam except for writing
instruments, your own brain, and the exam packet itself. This exam is closed notes, closed
neighbor, closed electronic devices, etc.. The last two pages of this exam provide a list of
potentially helpful identities as well as room for scratch work (respectively). Please detach
those last two pages from the exam packet. No markings on these last two pages will be
graded. Your answer for each question must fit in the answer box provided.

Instructions: Before you begin, Put your name and UW Net ID at the top of this
page. Make sure that your name and ID are LEGIBLE. Please ensure that all of your
answers appear within the boxed area provided.

Section Max Points
Asymptotic Analysis 14

Pre-Midterm Data Structures 13
Hash Tables 14

Sorting 9
Graphs 18

Parallelism 12
Concurrency 15

P vs NP 5
Extra Credit (+2)

Total 100

CSE 332 2 Final Exam

Section 1: Asymptotic Analysis
(4 pts)Question 1: Asymptotic Analysis of Code
Give a simplified Θ bound on the best and worst case running times for the given code. (By simplified we
mean it should contain no constant coefficients or non-dominant terms.)
int doStuff(List<Integer> numbers){

int n = numbers.size();
int count = 0;
if(n < 150){

for (int i = 0; i < n; i++){
for (int j = i; j < n; j++){

count++;
}

}
}
else{

for (int i = 0; i < n; i++){
count += n;

}
}
return count;

}

(a) Best Case: Θ(n)

(b) Worst Case: Θ(n)

(6 pts)Question 2: Which is larger?
For each pair of functions f(n) and g(n) below, select the choice which characterizes the asymptotic
relationship between f and g. Write the letter corresponding with your answer in the box provided.

1. f(n) = n2 log(4n), g(n) = n log2(4n)

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

2. f(n) = n1.5, g(n) = n log(n)

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

3. f(n) = n, g(n) =
∑n

i=0
i
2

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

C

C

B

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 3 Final Exam

(4 pts)Question 3: Recurrence Relation
The method given below determines whether the sum of values in a given list is odd. First, express the
worst case running time of the code as a recurrence relation. Next solve that recurrence relation using any
method of your choice and express the running time as a simplified Θ bound.

boolean oddSum(int[] nums){
return oddSumRec(nums, 0, nums.length);

}
boolean oddSumRec(int[] nums, int lo, int hi){

if(hi-lo <= 0){return false;}
if(hi-lo == 1){return nums[lo]%2 == 1;}
if(hi-lo == 2){return (nums[lo] + nums[lo+1])%2 == 1;}
int third = (hi-lo)/3;
boolean left = oddSumRec(nums, lo, lo+third);
boolean middle = oddSumRec(nums, lo+third, hi-third);
boolean right = oddSumRec(nums, hi-third, hi);
boolean odd = False;
odd = (odd != left); // Note: != is the same as XOR
odd = (odd != right);
odd = (odd != middle);
return odd;

}

1. Recurrence Relation: T (n) = 3T (n
3) + c

2. Solved and simplified Θ bound: n

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 4 Final Exam

Section 2: Pre-Midterm Data Structures
(5 pts)Question 4: Heap
Answer each question below as it relates to a 0-indexed binary min heap containing 65 items. 0-indexed
means the root of the tree is at index 0 in its array representation.

1. What is the height of the tree (recall that a one-node tree has height 0)?

6

2. If we call percolate up on index 15, which index will we compare to?

7

3. If we call percolate down on index 15, which two indices will we compare to?

31 and 32

4. What is the smallest index which contains a leaf?

32

5. What index contains the smallest value?

0

(4 pts)Question 5: B Tree
Suppose we had a B Tree with L = 5 and M = 20 that has height 3.

1. What is the minimum number of items in the data structure?

2 · 10 · 10 · 3 =
600

2. What is the maximum number of items in the data structure?

20 ·20 ·20 ·5 =
40000

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 5 Final Exam

(4 pts)Question 6: AVL Tree
Using the AVL Tree below, complete the table by indicating the type of AVL Tree rotation that would
occur for each key inserted ("single", "double", or "none").

Each row should be considered completely independently (i.e. "reset" to the image between rows).

Key Inserted Rotation Type (write "single", "double", or "none")

0 single

2 double

22 double

26 single

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 6 Final Exam

Section 3: Hash Tables
(2 pts)Question 7: Prime length
In 1-2 sentences, explain why it is generally preferable to have a separate chaining hash table with a
prime-numbered length.

Prime valued lengths cause better distribution when you mod by the table length. (Also
acceptable: fewer collisions, more likely to use every index)

(5 pts)Question 8: Quadratic Probing
Insert 18, 9, 29, 48, 12, 28, 19 (in that order) into the open addressing hash table below. You should use the
primary hash function h(k) = k%10. In the case of collisions, use quadratic probing for collision resolution.
If an item cannot be inserted into the table, indicate this and continue inserting the remaining values.

Items that could not be inserted:

0 29

1

2 48

3 12

4

5 19

6

7 28

8 18

9 9

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 7 Final Exam

(5 pts)Question 9: Double Hashing
Insert 55, 15, 25, 28, 8, 48 (in that order) into the open addressing hash table below. You should use the
primary hash function h(k) = k%10. In the case of collisions, use double hashing for collision resolution
where the secondary hash function is g(k) = 1+(k%9). If an item cannot be inserted into the table, indicate
this and continue inserting the remaining values.

Items that could not be inserted:

0

1

2 15

3 25

4

5 55

6 48

7 8

8 28

9

(2 pts)Question 10: Quadratic v. Linear Probing
In 1-2 sentences, explain why one might chose to use Quadratic probing over linear probing.

Linear probing can cause clustering, increasing the running time of probing.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 8 Final Exam

Section 4: Sorting
(4 pts)Question 11: Sort Suggestions Hotline
For each scenario below, select the sorting algorithm property the situation most needs, then select the
fastest sorting algorithm with that property. Select only from the options provided.

1. I am running election simulations of the voters in the Oklahoma governor’s race. There are about 4
million voters in the state, and I will be running over 100 million simulations. I want to sort those
outcomes by the number votes cast for the current governor.
Property Options: In Place, Stable, Adaptive, Online, Non-Comparison-Based.

Property Needed: non-comparison based

Algorithm Options: Quick Sort, Insertion Sort, Heap Sort, Radix Sort.

Algorithm Suggestion: Radix Sort

2. I need to maintain a list of a grocery store’s inventory items sorted by price. Every time we get a new
delivery, though, some small number of the items may have had price increases or decreases, and so
I’ll need to completely re-sort the list.
Property Options: In Place, Stable, Adaptive, Online, Non-Comparison-Based.

Property Needed: Adaptive

Algorithm Options: Quick Sort, Insertion Sort, Merge Sort.

Algorithm Suggestion: Insertion Sort

(2 pts)Question 12: Stable Sort
Which of the following best matches the definition of Stable Sort? Write the letter of your choice in the box.

A. Items are re-ordered by swapping within the given list data structure

B. There is no randomness used in the sorting algorithm

C. The worst case running time matches the best case running time

D. Only non-equal elements may change relative order

E. If you re-run the algorithm on an already-sorted list, no items will change order

D

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 9 Final Exam

(3 pts)Question 13: Quick Sort Runtime
Using 1-2 sentences, explain why it might be a bad idea to always use the item at the left-most index as
the pivot for Quick Sort.

The running time would be n2 in the (not uncommon) situation that the list was already
sorted. This is because the pivot will always be the smallest value, causing uneven splits at
each recursive step.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 10 Final Exam

Section 5: Graphs
(4 pts)Question 14: Minimum number of edges
Below we will give several descriptions of a graph. In the box provided, indicate the minimum number of
edges that graph could have.

1. A connected undirected graph with 10 nodes

9

2. A weakly-connected directed graph with 10 nodes

9

3. A strongly-connected directed graph with 10 nodes

10

4. A Complete undirected graph with 10 nodes

45

(4 pts)Question 15: Topological Sort
List the nodes in the graph below such that they are in two different topologically sorted orderings.

Topological Order 1: 4,0,1,[2,6,5],3
or [6,2,5] or [6,5,2]

Topological Order 2: see previous

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 11 Final Exam

(2 pts)Question 16: BFS
For the graph below, list the nodes in an order that they might be removed from the queue in a BFS
starting from node 6 (note that this is the same as the previous graph, but now undirected).

BFS Order: 6, [odds], [evens]
(e.g. 6,1,3,5,0,2,4)

(2 pts)Question 17: Dijkstras
For the graph below, list the nodes an order that they might be removed from the priority queue when
running Dijkstra’s algorithm starting from node 6 (note that his is the same as the previous graph, but now
with weights).

Dijkstra’s Order: 6,3,4,5,0,1,2

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 12 Final Exam

(6 pts)Question 18: MSTs
The next 2 questions will relate to running minimum spanning tree algorithms (Kruskal’s and Prim’s) on
the graph below (which is the same as the previous graph, but with different weights):

1. What are the weights of the first three edges added to the minimum spanning tree when running
Kruskal’s algorithm?

First edge’s weight: 1

Second edge’s weight: 4

Third edge’s weight: 7

2. What are the first three edges added to the minimum spanning tree when running Prims’s algorithm
starting with node 0?

First edge’s weight: 4

Second edge’s weight: 1

Third edge’s weight: 8

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 13 Final Exam

Section 6: Parallelism
(8 pts)Question 19: ForkJoin
For this question you will complete a parallel implementation of the following sequential method using the
Java ForkJoin Framework.

The sequential method determines whether the given array’s sum is an odd number.

A list has an odd sum if and only if there is an odd number of odd values. The provided algorithm maintains
a boolean variable oddOdds to indicate whether an odd number of odd values have been seen thus far. It is
initially false, then it inverts oddOdds once per each odd value in the input.

boolean oddSum(int[] arr){
boolean oddOdds = False;
for(int i = 0; i < arr.length; i++{

if (arr[i]%2 == 1){
oddOdds = !oddOdds;

}
}
return oddOdds;

}

On the next page we have provided the majority of the code to implement oddSum in parallel using ForkJoin
and RecursiveTask. In particular, we have provided:

– a main class which invokes the ForkJoin Pool

– the constructor for the class which extends RecursiveTask

– the sequential code within compute that runs when the array length is below the sequential cutoff (we
chose 100 as the cutoff)

Complete our implementation by finishing the compute method.

(Hint: If you get stuck on coming up with an algorithm, question 3 provides a divide-and-conquer algorithm for this problem.)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 14 Final Exam

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;

public class Main {
public static final ForkJoinPool fjPool = new ForkJoinPool();
public static Boolean OddSum (int[] input) {

return fjPool.invoke(new OddSumTask(input, 0, input.length));
}

}

public class OddSumTask extends RecursiveTask<Boolean> {
int[] arr;
int hi;
int lo;

public OddSumTask(int[] arr, int lo, int hi){
this.arr = arr;
this.hi = hi;
this.lo = lo;

}

public Boolean compute(){
if (hi-lo < 100){

boolean oddOdds = false;
for(int i = lo; i < hi; i++){

if (arr[i]%2==1)
oddOdds = !oddOdds;

}
return oddOdds;

}
// finish the compute method here

int mid = lo + (hi+lo)/2;
OddSumTask left = new SumOddTask(arr,lo,mid);
OddSumTask right= new SumOddTask(arr,mid,hi);
left.fork();
boolean rightAns = right.compute();
boolean leftAns = left.join();
return (rightAns != leftAns);

}

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 15 Final Exam

(2 pts)Question 20: Map,Reduce,Pack
Each option below describes a combination of map, reduce/fold, and pack/filter. Write "True" or "False" in
each box to indicate whether that option would also compute oddSum?

A. Map all values of the array to -1 if even and 1 if odd, then use a reduction to find the sum of the array,
returning true if the sum is positive and false otherwise.

False

B. Pack all of the values using the boolean function x%2 == 1, then return true if the length of the resulting
array is odd (and false otherwise).

True

(2 pts)Question 21: Parallel Pack
Suppose after the first stage of a parallel pack (i.e. filter) operation (that is, the map applying a boolean
function to each index of the input array), you find that the value at index i is 1, at index i + 1 is 1, and at
index i + 2 is 0. That is, the parallel map result appears like this:

Next, suppose that after the second stage of the same parallel pack operation (that is, the parallel prefix
sum), you find that the value at index i is 10.

For each question below we give an index from the input array. If that item appears in the final output
array, give its index. If does not appear, write "None".

1. At what index of the output array will you find the value that was at index i + 1 of the input array?

10

2. At what index of the output array will you find the value that was at index i + 2 of the input array?

None

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 16 Final Exam

Section 7: Concurrency
The questions on this page and the next use the following three java classes below being used in a parallel
implementation. All three relate to writing to and erasing a whiteboard.

1 public class WhiteBoard{
2 public String contents = "" ;
3 synchronized public void writeTo(String text){
4 this.contents += text;
5 System.out.println(contents);
6 }
7 }
8 public class Marker{
9 public int inkRemaining;

10 public Marker(){
11 this.inkRemaining = 10;
12 }
13 public void writeWith(Whiteboard wb, String text){
14 int written = 0;
15 while(this.inkRemaining > 0 && written < text.length()){
16 wb.writeTo(text.charAt(written++));
17 inkRemaining--;
18 }
19 }
20 }
21 public class Eraser{
22 public void erase(Whiteboard wb){
23 synchronized(wb){
24 wb.contents = "" ;
25 wb.writeTo("");
26 }
27 }
28 }

(1 pt)Question 22: Erase Deadlock?
The erase method in the Eraser class does not cause deadlock even though both it and writeTo require
the same lock. Using 1 sentence, explain why.

Because the locks are re-entrant.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 17 Final Exam

(2 pts)Question 23: Negative Ink
If no marker objects are shared among threads then it is impossible for a marker to have negative ink.
Using 1-2 English sentences, describe how three threads using the same marker could cause that marker to
have the value -2 in the inkRemaining field.

With 1 unit of ink remaining, each thread performs the check in the loop guard, then pauses
execution before calling writeTo. One thread then writes and decrements inkRemaining to
0, then the next two together decrement it to -2.

(2 pts)Question 24: Nonsense Text
Suppose two threads have a reference to the same Whiteboard object in a variable called wb. The first thread
calls new Marker().writeWith(wb,"one"). The second thread calls new Marker().writeWith(wb,"two").
Using 1-2 English sentences, describe how it could be that the final value of wb.contents is "otwneo" ?

The lock on wb is released after every write, so arbitrary interleavings of the while loop
iterations are all possible.

(2 pts)Question 25: Adding Syncronized
Suppose we made the writeWith method synchronized, i.e., we change its signature to:

synchronized public void writeWith(Whiteboard wb, String text)

Write "True" or "False" to indicate whether the previous two scenarios above are still possible.

1. It is still possible for a marker to have negative ink when shared among multiple threads.

False

2. It is still possible for two threads (with one calling new Marker().writeWith(wb,"one") and the
other calling new Marker().writeWith(wb,"two")) to cause wb.contents to become "otwneo" .

True

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 18 Final Exam

(8 pts)Question 26: Deadlock and/or Race Condition
Below we provide a partial implementation of a doubly-linked list. It has a pointer to the first node (called
front) and the last node (called back). Each node has an integer value, and a reference to the next and
previous nodes. The add method appends a node with the given value to the end of the list. The set
method changes the value of the node at the given index.

For this question you will consider potential implementations of a setBackwards method, which does the
same thing as set, but working from the back of the list instead of the front.

For each setBackwards implementation, indicate whether a thread invoking the set method above and a
parallel thread invoking the setBackwards method on a shared LinkedList instance has a potential for
deadlock and whether it as a race condition by writing "yes" or "no" in the corresponding box.

public class LinkedList{
private LLNode front;
private LLNode back;
private class LLNode{

public LLNode prev;
public LLNode next;
public int value;

}
public LinkedList(){...} //constructor

synchronized public void add(int val){...} //add a node to the back of the list

public void set(int index, int newVal){ //change the value at the given index
synchronized(this.front){

LLNode curr = this.front;
for(int i = 0; i < index; i++)

curr = curr.next;
synchronized(curr){

curr.value = newVal;
}

}
}
//change the value at the given index from the back
public void setBackwards(int index, int newVal){...}

}

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 19 Final Exam

1.

public void setBackwards(int index, int newVal){
synchronized{this.back}{

LLNode curr = this.back;
for(int i = 0; i < index; i++){

curr = curr.prev;
}
synchronized{curr}{

curr.value = newVal;
}

}
}

Deadlock? Yes

Race Condition? No

2.

public void setBackwards(int index, int newVal){
synchronized{this.front}{

LLNode curr = this.back;
for(int i = 0; i < index; i++){

curr = curr.prev;
}
synchronized{curr}{

curr.value = newVal;
}

}
}

Deadlock? No

Race Condition? No

3.

public void setBackwards(int index, int newVal){
synchronized{this.back}{

LLNode curr = this.back;
for(int i = 0; i < index; i++){

synchronized(curr){
curr = curr.prev;

}
}
curr.value = newVal;

}
}

Deadlock? Yes

Race Condition? Yes

4.

synchronized public void setBackwards(int index, int newVal){
LLNode curr = this.back;
for(int i = 0; i < index; i++){

curr = curr.prev;
}
curr.value = newVal;

}

Deadlock? No

Race Condition? Yes

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 20 Final Exam

Section 8: P vs NP
(5 pts)Question 27: Complexity Classes

For each statement below indicate whether it is known to be true, known to be false, or whether the truth
of the statement is not yet known by writing "True", "False", or "unknown" in the corresponding box.

1. If a problem can be solved by an algorithm with running time Θ(n7) then it belongs to class P.

True

2. If a problem can be solved by an algorithm with running time Θ(n7) then it belongs to class NP.

True

3. If a problem can be verified by an algorithm with running time Θ(n7) then it belongs to class P.

Unknown

4. If a problem can be verified by an algorithm with running time Θ(n7) then it belongs to class NP.

True

5. If a problem can be verified by an algorithm with running time Θ(n7) then it belongs to class EXP.

True

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 21 Final Exam

Extra Credit
(2 pts)Question Extra Credit: What did you learn this quarter?
Nathan’s grandmother, Elouise, is 94 years old and has never used a computer before in her life. Summarize
what you learned this quarter in a way that Elouise would appreciate.

Any text that is kind to Grandma.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 22 Final Exam

Scratch Work
Nothing written on this page will be graded.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 23 Final Exam

Identities
Nothing written on this page will be graded.

Summations

∞∑
i=0

xi = 1
1 − x

for |x|< 1

n−1∑
i=0

=
i=1∑
n

= n

n∑
i=0

i = 0 +
i=1∑
n

i = n(n + 1)
2

n∑
i=1

i2 = n(n + 1)(2n + 1)
6 = n3

3 + n2

2 + n

6
n∑

i=0
i3 =

(
n(n + 1)

2

)2
= n4

4 + n3

2 + n2

4
n−1∑
i=0

xi = 1 − xn

1 − x

n−1∑
i=0

1
2i

= 2 − 1
2n−1

Logs

xlogx(n) = n

loga(bc) = c loga(b)
alogb(c) = clogb(a)

logb(a) = logd(a)
logd(b)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

