CSE 332
Data Structures & Parallelism
Topological Sort

Melissa Winstanley
Spring 2024

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that if no

vertex appears beforejany other vertex that has an edge to it

CSE 122
l

Example input:

CSE 121
—

Example output:

)

CSE 332

~——
)

CSE 312

~——
)

CSE 333

121,126, 122, 123, 311, 331, 332, 312, 341, 351, 333, 440, 352

CSE 440

L
Valid Topological Sorts: \ O , 3,2\ \

o,\, 2,3 U
\ O 1,5

Questions and comments

e Why do we perform topological sorts only on DAGs?
Wmdy = nell “Cir!
C\,C\\'C — V\O \\Q\' (5,\/‘\

e Is there always a unique answer?

N

e \What DAGs have exactly 1 answer?
O____..»O——/-%MO”——"G

e Terminology: A DAG represents a partial order and a topological sort
produces a total order that is consistent with it

Topological Sort Uses

e Figuring out how to finis r degree

e Computing the order in which to recompute cells in a
spreadsheet

e Determining the order to compile files using a Makefile

\

¢ |n general, taking a dependency graph and coming up with an
order of execution

A First Algorithm for Topological Sort

1. Label ("mark”) each vertex with its in-degree

e —

- Think “write in a field in the vertex”

- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a. Choose a vertex v labeled with in-degree o@
b. Output v and conceptually remove it from the graph
c. For each vertex w adjacent to v (i.e. w such that (v,w) in E),
decrement the in-degree of w

1. Label ("mark”) each vertex with its
in-degree
- Think “write in a field in the vertex”
- Could also do this via a data
structure (e.g., array) on the side
2. While there are vertices not yet output:
a. Choose a vertex v labeled with
in-degree of 0
b. Output v and conceptually remove
it from the graph
c. Foreach vertex w adjacent to v
(i.e. w such that (v,w) in E),
decrement the in-degree of w

Example

[CSE 121 H CSE 122]—>

Node: 121 122 123 126 311 312 331 332 333 341 351 352 440

)
CSE 332 CSE 440
~——

)

CSE 312

N~—
)

CSE 333

Removed?
In-degree:

Output:

Example

)
CSE 331 CSE 332 CSE 440
~——

—

CSE 121 CSE 122 CSE 311 CSE 312
R —
—

CSE 333

CSE 341
CSE 351

Node: 121 122 123 126 311 312 331 332 333 341 351 352 440

Removed? x X X X X X X X X X X X X

In-degree: 0 1 1 0 2 1 1 1 1 1 1 2 1
0 0 0 1 0 0 0 0O O 0 1 0

Output: 121, 122, 123, 126, 331, 311, 341, 351, 332, 312, 333, 352, 440

A couple of things to note

e Needed a vertex with in-degree of 0 to start

- No cycles

e Ties between vertices with in-degrees of 0O can be broken

arbitrarily

- Potentially many different correct orders

v =E d
Topological Sort: Running time? 3, \\5™

C+V labelEachVertexWithItsInDegree () ;
\ﬁ“m%or(ctr=0; ctr < numVertices; ctr++) {
—>\/v = findNewVertexOfDegreeZero() ; — - \uo

&’V\Q_ J\Yr 0\7

O)—put v next in output
4 for each w adjacent to v

w.lndegree--;

RV 4 14
(\N’E}% VA

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the “pending” zero-degree nodes in atttst; , . DOX, {a or
something

- Order we process them affects output but not correctness or efficiency
provided add/remove are both(O(1))

Using a queue:

1. Label each vertex with its in—degree,\enqueue 0-degree nodes/)
2. While queue is not empty
a) v =dequeue()é—
b) Output v and remove it from the graph
c) Foreach vertex w adjacent to v (i.e. w such that (v,w) in E), decrement
the in-degree of w, if new degree is 0, enqueue it

Topological Sort(optimized): Running time?

A labelAllAndEnqueueZeros () ;
\/Jfor (ctr=0; ctr < numVertices; ctr++) {

oly = dequeune () ¥

put v next in output
for each w adjacent to v
w.indegree--;

if (w.indegree==0)
\\\5senqueue(w); d@}
}

VHE N (A Y —> @

