
CSE 332
Data Structures & Parallelism

Topological Sort

Melissa Winstanley
Spring 2024

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that if no
vertex appears before any other vertex that has an edge to it

Example input:

Example output:

121, 126, 122, 123, 311, 331, 332, 312, 341, 351, 333, 440, 352

CSE 121 CSE 122 CSE 123

CSE 331

CSE 311

CSE 341

CSE 351

MATH
126

CSE 312

CSE 332 CSE 440

CSE 333

CSE 352

1

0

2

3

4

Valid Topological Sorts:

1

0

2

3

4

Valid Topological Sorts:
0, 1, 2, 3, 4 0, 1, 3, 2, 4
1, 0, 2, 3, 4 1, 0, 3, 2, 4
1, 2, 0, 3, 4

Questions and comments

● Why do we perform topological sorts only on DAGs?

● Is there always a unique answer?

● What DAGs have exactly 1 answer?

● Terminology: A DAG represents a partial order and a topological sort
produces a total order that is consistent with it

Topological Sort Uses

● Figuring out how to finish your degree

● Computing the order in which to recompute cells in a
spreadsheet

● Determining the order to compile files using a Makefile

● In general, taking a dependency graph and coming up with an
order of execution

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
- Think “write in a field in the vertex”
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a. Choose a vertex v labeled with in-degree of 0
b. Output v and conceptually remove it from the graph
c. For each vertex w adjacent to v (i.e. w such that (v,w) in E),

decrement the in-degree of w

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its
in-degree

- Think “write in a field in the vertex”
- Could also do this via a data

structure (e.g., array) on the side
2. While there are vertices not yet output:

a. Choose a vertex v labeled with
in-degree of 0

b. Output v and conceptually remove
it from the graph

c. For each vertex w adjacent to v
(i.e. w such that (v,w) in E),
decrement the in-degree of w

1

0

2

3
4

3 /

2 3 /

4 /

4 /

/

0

1

2

3

4

In-
degree

Example

Node: 121 122 123 126 311 312 331 332 333 341 351 352 440

Removed?

In-degree:

Output:

CSE 121 CSE 122 CSE 123

CSE 331

CSE 311

CSE 341

CSE 351

MATH
126

CSE 312

CSE 332 CSE 440

CSE 333

CSE 352

Example

Node: 121 122 123 126 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x x x

In-degree: 0 1 1 0 2 1 1 1 1 1 1 2 1
 0 0 0 1 0 0 0 0 0 0 1 0
 0 0

Output: 121, 122, 123, 126, 331, 311, 341, 351, 332, 312, 333, 352, 440

CSE 121 CSE 122 CSE 123

CSE 331

CSE 311

CSE 341

CSE 351

MATH
126

CSE 312

CSE 332 CSE 440

CSE 333

CSE 352

A couple of things to note

● Needed a vertex with in-degree of 0 to start
- No cycles

● Ties between vertices with in-degrees of 0 can be broken
arbitrarily
- Potentially many different correct orders

Topological Sort: Running time?

 labelEachVertexWithItsInDegree();
 for(ctr=0; ctr < numVertices; ctr++){
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
 }

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or
something

- Order we process them affects output but not correctness or efficiency
provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex w adjacent to v (i.e. w such that (v,w) in E), decrement

the in-degree of w, if new degree is 0, enqueue it

Topological Sort(optimized): Running time?

 labelAllAndEnqueueZeros();
 for(ctr=0; ctr < numVertices; ctr++){
 v = dequeue();
 put v next in output
 for each w adjacent to v
 w.indegree--;
 if(w.indegree==0)
 enqueue(w);
 }

