CSE 332
Data Structures & Parallelism

Parallel Prefix Sum

Melissa Winstanley
Spring 2024

The prefix-sum problem

Given int[] input, produce int[] output where:

7 S
outputfi] = inp O]+input[1l]+..+input[i]
[11+. yingh

input 6 4 1 f 10 |C (‘L‘Gj) 14 2 8

\ W A~ ,
output | 6 | 1026 436}y 52 | 66 | 68 | 76

Gy D 26
Does not seem parallelizable

- Work: O(n), Span: O(n)
- This algorithm is sequential, but a different algorithm has Work: O(n), Span:
O(log n

The prefix-sum problem

Sequential can be an intro to CS exam problem

input

output

6 4 16 10 16 14 2

6 10 26 36 52 66 68

76

int[] prefix sum(int[] input) {

int[] output =
output[0] = input[0];

for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];
nputlil,
return output; =

new int[input.length];

Parallel prefix-sum

e The parallel-prefix algorithm does two passes
- Each pass has O(n) work and O(log n) span—
- So in total there is O(n) work and O(log n) span
- So like with array summing, parallelism is n/log n
e An exponential speedup—

e First pass builds a tree bottom-up: the “up” pass
e Second pass traverses the tree top-down: the “down” pass

Pass #2
The Passes Fill in

Data Structure

Pass #1 S\—}S’?\)
Fill in sum guosey

output

Parallel Prefix: The Up Pass

We build want td build a binary tree)where

e Root has sum of the range [x,y)
e If a node has sum of [lo,hi) and hi>lo,
- Left child has sum of [lo,middle)
- Right child has sum of [middle,hi)
- Aleaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will need it for the down pass

e \We do not need an actual linked structure
e We could use an array as we did with heaps

Analysis of first step: Work = Span =

The (completely non-obvious) idea:

Do an initial pass to gather

range 0,8
information, enabling us to do a s_ﬁan_ A
second pass to get the answer / A
4 9
First we’ll gather range 0,4 range 4,8
the ‘sum’ for each sum % & sum “\ O
recursive block fromleft fromleft
range 0.2 range 24 range 4,6 | range 6,8
sum |0 sum sum OO sum O
fromleft fromleft fromleft fromleft
r01r12 ([r23 |[r34 |[r45 |[r 56 |[r 6,7 ‘ r 7.8
s b 4ls Y s\t [|s\O [|s\t [[sM |[sZ Hs D
f f f f f f f f
linput) [6 | 4 [16 | 10 [16 | 14 [2 | 8
output

First pass range 0,8
p cum 76 1,—40
L —". / fromleft () \
the sum of all values v e
in it ; range range :
bropagatisumup |Sum 36D Flsum 40 |3 e
?ro :1 l%a P fromleft () fromle
T
. range (range 24 range ran 6,8
1‘1]:]::1 V;::l:l surrslJ 0¥ sun? 26 surr? 30)= sun?‘u 10
P fromleft () fromleft | O fromleft fromleft
sum, but
recording /\L m
f“;erme‘t’i‘a rod |[r12 |[r23 |[r34 re67 |[r78
informatior} | ¢ 6-ts 4 |[s 16s 10 Lo a
f O IIf GIf\0lf 2% A LA
_ - e - \— BY
input 6 4 16 10 16 14 2 8
output!| | (4 \O 26 o S22l b | & 76

Second pass

range 0,8
sum
fromleft 0O

Using ‘sum’, get the

//

sum of everything to

the left of this range | " e

ange y
um
fromleft 36

48 \
40

4 6 Ne
(calie fromleft; Livomiett @ \
root \\; 1 / / \
rang 2 range 2,4 ran 4,6 range 6,
su 10 sum 26 su 30 sum 10
fromleft 0 | mieft) 10 fromleft 36 | | fromleft 66
r/0,1 r1,2 |(r 23 |[r 3 r/'45 |[[r 56 |[[r 6,7 |[[r 7.8
6 I S 4 |[s 16 ||s 10 16 ||S 14 || 2 s 8
) T 6 [[F 10|l f 26 Nf 36 ||f 52 ||f 66 |[f 68
7) p——
input 6 4 16 10 16 14 2 8
\i._.
output 6 10 26 36 52 66 68 76

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum
illustrates a pattern that arises in many, many problems

e Minimum, maximum of all elements to the left of 1

——"

e |s there-an-element to the left of i satisfying some property?

e Count of elements to the left of i satisfying some property
- This last one is perfect for an efficient parallel pack...
- Perfect for building on top of the “parallel prefix trick”

Pack (think “Filter”)

[Non-standard terminology]

Given an ar input, produce an array output containing only elements such that
(f (element) is true)

Example: input [17, , 8, 11, 5, 13, 19, 0, 24]

“is e ement

output [%7 11, 13, 19, 24]

Parallelizable?

- Determining whether an element belongs in the output is easy
- But determining where an element belongs in the output is hard; seems to depend

on previous results....

Parallel Pack = (Soln)

parallel map + parallel prefix + parallel map
1.

ParaIIeI map to compute a bit-vector for true elements:

5148@5@@0@

input [17,

bitsum [1,

output [17,

1, 1,

Parallel map to}rod e th\eéwlem:/

11,

1,

2, 3,

In this example,
Filter =
element > 10

Parallel Pack = (Soln) In this example,

parallel map + parallel prefix + parallel map
1.

Filter =
element > 10

Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, O, O, 1, O, 1, 1, O, 1]

Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

Parallel map to produce the output:
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++) {
IFQA'*S" |y 7-'-'\ _ : :
0 u%@u\{\,.\%umv\- \&:'W\\) ov G

Parallel Pack = (Soln)

parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
~—>input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [X; 0, 0 o,%) 0, 1, 1, 0, 1]
2. PLaIIe_LpLeﬁgsum on the bit vector\/ \/ \/

bitsum [1) 1, 1, 1@ 2 3, 4, 4, 5]
3. Parallel map {o produce the output

output @f 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++) {
if (bits[i
Output[bitsum[i]-1] = input[i]
— T Y Y

In this example,
Filter =
element > 10

Parallel Pack = (Soln)

parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, O, O, O, 1, O, 1, 1, O, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output: 2

output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++) {
if (bits[i] == 1)
Output[bitsum[i]-1] = input[i]

In this example,
Filter =
element > 10

Span =
O(log n)

Span =
O(log n)
_—

Span =
O(log n)
e

Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)

Best / expected case work

1. Pick a pivot element o1

2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort Aand C 2T(n/2)

Recurrence (assuming a good pivot): T(0)=T(1)=1

Run-time: O(nlogn)
How should we parallelize this?

Parallel Quicksort (version 1)

Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort Aand C %\T(nIZ)

First: Do the two recursive calls in parallel
e Work: OU\\DSV%

e Span:T(n)= DU\\ ol < A //)\ —> D (“w

Review: Really common recurrences

Should know how to solve recurrences but also recognize some really common
ones: '

T(n)=0(1) + T(n-1) linear

T(n) = O(1) + 2T(n/2) linear

T(n) = O(1y+ T(n/2) logarithmic
T(n)=0O(1) ¥ 2T(n-1) exponential
T(n) =/O(nX+ T(n-1) quadratic
T(n) $O(N) N T(n/2 linear

T(n) (n)H n O(n log n)

Note big-Oh ¢an also use more than one variable

e Example: can sum all elements of an n-by-m matrix in O(nm)

Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that
f (element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: “is element > 10”7
output [17, 11, 13, 19, 24]

Parallelizable?

- Determining whether an element belongs in the output is easy
- But determining where an element belongs in the output is hard; seems to depend
on previous results....

Parallel partition

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

This is just two packs!
SN
- We know a pack is O(n) worpan
- Pack elements less than pivot into left side of aux array
- Pack elements greater than pivot into right size of aux array
- Put pivot between them and recursively sort

- With a little cleverness, can do both packs at once (!) but no big-O change

With Q(\bg\ (\\ span for partition, the total span for quicksort is

O(06/\3 A TLH/LB

Parallel Quicksort Example (version 2)

Step 1: pick pivot as O 1 2 3 4 5 6 7 8 9
median of three 8 1 4 9 35/ 2|7 \/Q\\

DR

Steps 2a and 2c (combinable)Tpack less than pivot, then pack greater than pivot
into a second array

11|14|0[3(5|2

- Fancy parallel prefix to g\khj
off (not shown)

Step 3: Two recursive sorts in parallel

- Can sort back into original array (like in mergesort)

Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n log n)
1. Sort left half and right half 2T(n/2)
2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence

for the Span to T(n) = O(n) + 1T(n/2) = Q(h) A

e Again, Work is O(nlogn), and
e parallelism is work/span = O(log n)
e To do better, need to parallelize the merge
- The trick won’t use parallel prefix this time...

of the smaller half
e Merge the second m/2 elements of the |
half

O\ | U3 |H]S|Ie]7]¢ |9

Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

0/ 4/6|8|9 1/ 2(3|5]|7

N
Suppose the larger subarraL has m elements. In parallel: /\

e Pick thlement of the larger array (here 6) in constant time
e In the otgeParray, usto find the first element greater than or equal to
that median (here 7)

Then, in parallel:

e Merge half the larger array (from the median onward) with the upper part of the

shorter array
e Merge the lower part of the larger array with the lower part of the shorter array

Example: Parallelizing t

ne merge

0

4

6

8

9

1

Example: Parallelizing the merge

VYN

0(4/6 8|9 112|395

1. Get median of bigger half: O(1) to compute middle index

Example: Parallelizing the merge

0/4/,6(8|9 1123

1. Get median of bigger half\O(1) fo compute middle index
2. Find how to split the smaller half at the same value:

[O(log n)\to do binary search on the sorted small half

—

Example: Parallelizi

(0|4)6|8|9
.

f ' , 1

Gy 2 1S e 7] e

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:
O(log n) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: O(1)

Example: Parallelizing the merge

rge
s

Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half

Size of two sub-merges conceptually splits output array: O(1)
Do two submerges in parallel

—

B w

Parallel Merge Pseudocode left left2

Merge @ Ieftz,@, right,,, out(], out1, out) right1
int IeftS|ze“Ieft Ieft “‘

int rightSize = rlght rlght
// Assert: out, — out, = leftSize + rightSize
// We will assume leftSize > rightSize without loss of generality
if (leftSize + rightSize < CUTOFF)
— sequential merge and copy into out[out1..out2]
int\mid |= (left, — left,)/2
binarySearch arr[right,..right,] to find j such that
arr[j] < arr[mid] < arr[j+1]
>X(Merge(arr]], Ieft1, mid, right., J, out(], out,, out1+mid+j)
Merge(arr[], mid+1, left,, j+1, right2, out[], out,+mid+j+1, out,)

right2

Analysis

e Doing the two recursive calls in parallelbut a sequential merge:

Work: same as sequential O(n log n)
Span: T(n)#11H(n/2)+O(n) which is

e Parallel merge makes work and span harder to compute...
- Each merge step does an extra binary search to find how to split
the smaller subarray
- To merge n elements total, do two smaller merges of possibly different
sizes

- But worst-case split is (3/4)n and (1/4)n

e Happens when the two subarrays are of the same size (n/2) and the
“smaller” subarray splits into two pieces of the most uneven sizes
possible: one of size n/2, one of size 0

Analysis continued

For just a parallelFmerge of n elements:
e Work is T(n) =T (3n/4)+ + Qlog n) which is O(n)l

e Spanis T(n) =J(3n/4) + Oftogn which is(Q(log” n))

e (neither bound is immediately obvious, but “trust me”)
So for mergesort with parallel merge overall:

e Workis T(n) =2T(n/2) + O(n), which is O(n log n)

e Spanis T(n) which i@
So parallelism (work / span) is O(n / log? n)

e Not quite as good as quicksort’'s O(n / log n)
- But (unlike Quicksort) this is a worst-case guarantee
e And as always this is just the asymptotic resutt———

Summary

Quicksort (best case)
O(n log n) - sequential r{j WO ST 4 st

--> O(n) span - parallel calls to quicksort

--> O(log? n) span - parallel partition
Mergesort (worst case)
O(n log n) - sequential
--> 0(n) span - parallel calls to mergesort

--> O(log® n) span - parallel merge

Toward sharing resources (memory)

So far, we have been studyiné\ parallel algorithms msing the fork-join model

- Reduce span via parallel tasks

Fork-Join algorithms all had a very simple structure to avoid rw

- Each thread had memory “only it accessed”
e Example: each array sub-range accessed by only one thread
- Result of forked process not accessed until after join() called
- So the structure (mostly) ensured that bad simultaneous access wouldn’t occur

Strategy won'’t work well when:

- Memory accessed by threads isloverlappingYor unpredictable
- Threads are doing independent tasks needing access to same resources (rather

than implementing the same aigoritiim)

Heap for all objects
and static fields, shared

2 Threads, each with own unshared by all threads

call stack and “program counter”

