
CSE 332
Data Structures & Parallelism

Parallel Prefix Sum

Melissa Winstanley
Spring 2024



The prefix-sum problem

Given int[] input, produce int[] output where:

output[i] = input[0]+input[1]+…+input[i]

Does not seem parallelizable

- Work: O(n), Span: O(n)
- This algorithm is sequential, but a different algorithm has Work: O(n), Span: 

O(log n



Sequential can be an intro to CS exam problem

int[] prefix_sum(int[] input){
  int[] output = new int[input.length];
  output[0] = input[0];
  for(int i=1; i < input.length; i++)
    output[i] = output[i-1]+input[i];
  return output;
}

The prefix-sum problem



Parallel prefix-sum

● The parallel-prefix algorithm does two passes
- Each pass has O(n) work and O(log n) span
- So in total there is O(n) work and O(log n) span
- So like with array summing, parallelism is n/log n

● An exponential speedup

● First pass builds a tree bottom-up: the “up” pass
● Second pass traverses the tree top-down: the “down” pass



The Passes

Pass #1
Fill in sum

Pass #2
Fill in 
“From Left”

Data Structure

O(log n)

O(log n)

output



Parallel Prefix: The Up Pass

We build want to build a binary tree where

● Root has sum of the range [x,y)
● If a node has sum of [lo,hi) and hi>lo,

- Left child has sum of [lo,middle)
- Right child has sum of [middle,hi)
- A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will need it for the down pass

● We do not need an actual linked structure
● We could use an array as we did with heaps

Analysis of first step: Work = Span =









Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum 
illustrates a pattern that arises in many, many problems

● Minimum, maximum of all elements to the left of i

● Is there an element to the left of i satisfying some property?

● Count of elements to the left of i satisfying some property
- This last one is perfect for an efficient parallel pack…
- Perfect for building on top of the “parallel prefix trick”



Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that 
f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?

- Determining whether an element belongs in the output is easy
- But determining where an element belongs in the output is hard; seems to depend 

on previous results….



Parallel Pack = (Soln)
parallel map + parallel prefix + parallel map
1. Parallel map to compute a bit-vector for true elements:

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:

bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:

output [17, 11, 13, 19, 24]

In this example,
Filter =
element > 10



Parallel Pack = (Soln)
parallel map + parallel prefix + parallel map
1. Parallel map to compute a bit-vector for true elements:

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

In this example,
Filter =
element > 10

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){

}



Parallel Pack = (Soln)
parallel map + parallel prefix + parallel map
1. Parallel map to compute a bit-vector for true elements:

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

In this example,
Filter =
element > 10

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
  if (bits[i] == 1)
    Output[bitsum[i]-1] = input[i]
}



Parallel Pack = (Soln)
parallel map + parallel prefix + parallel map
1. Parallel map to compute a bit-vector for true elements:

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

In this example,
Filter =
element > 10

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
  if (bits[i] == 1)
    Output[bitsum[i]-1] = input[i]
}

Span = 
O(log n)

Span = 
O(log n)

Span = 
O(log n)

OVERALL = 
O(log n)



Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Recurrence (assuming a good pivot): T(0)=T(1)=1

T(n)=_________________

Run-time: O(nlogn)
How should we parallelize this?



Parallel Quicksort (version 1)

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

First: Do the two recursive calls in parallel

● Work:
● Span: T(n) =__________________



Review: Really common recurrences

Should know how to solve recurrences but also recognize some really common 
ones:

T(n) = O(1) + T(n-1) linear
T(n) = O(1) + 2T(n/2) linear
T(n) = O(1) + T(n/2) logarithmic
T(n) = O(1) + 2T(n-1) exponential
T(n) = O(n) + T(n-1) quadratic
T(n) = O(n) + T(n/2) linear
T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable

● Example: can sum all elements of an n-by-m matrix in O(nm)



Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that 
f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?

- Determining whether an element belongs in the output is easy
- But determining where an element belongs in the output is hard; seems to depend 

on previous results….



Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

This is just two packs!

- We know a pack is O(n) work, O(log n) span
- Pack elements less than pivot into left side of aux array
- Pack elements greater than pivot into right size of aux array
- Put pivot between them and recursively sort
- With a little cleverness, can do both packs at once (!) but no big-O change

With ____________ span for partition, the total span for quicksort is

T(n) =



Parallel Quicksort Example (version 2)

Step 1: pick pivot as
median of three

Steps 2a and 2c (combinable): pack less than pivot, then pack greater than pivot 
into a second array

- Fancy parallel prefix to pull this
off (not shown)

Step 3: Two recursive sorts in parallel

- Can sort back into original array (like in mergesort)



Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n log n)

1. Sort left half and right half 2T(n/2)
2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence 
for the Span to T(n) = O(n) + 1T(n/2) = O(n)

● Again, Work is O(nlogn), and
● parallelism is work/span = O(log n)
● To do better, need to parallelize the merge

- The trick won’t use parallel prefix this time…



Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

Idea: Suppose the larger subarray has m elements. In parallel:

● Merge the first m/2 elements of the larger half with the “appropriate” elements 
of the smaller half

● Merge the second m/2 elements of the larger half with the rest of the smaller 
half



Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

Suppose the larger subarray has m elements. In parallel:

● Pick the median element of the larger array (here 6) in constant time
● In the other array, use binary search to find the first element greater than or equal to 

that median (here 7)

Then, in parallel:

● Merge half the larger array (from the median onward) with the upper part of the 
shorter array

● Merge the lower part of the larger array with the lower part of the shorter array



Example: Parallelizing the merge



Example: Parallelizing the merge

1. Get median of bigger half: O(1) to compute middle index



Example: Parallelizing the merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half



Example: Parallelizing the merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: O(1)



Example: Parallelizing the merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value:

O(log n) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: O(1)
4. Do two submerges in parallel



Parallel Merge Pseudocode

Merge(arr[], left1, left2, right1, right2, out[], out1, out2)
int leftSize = left2 – left1
int rightSize = right2 – right1
// Assert: out2 – out1 = leftSize + rightSize
// We will assume leftSize > rightSize without loss of generality
if (leftSize + rightSize < CUTOFF)

sequential merge and copy into out[out1..out2]
int mid = (left2 – left1)/2
binarySearch arr[right1..right2] to find j such that

arr[j] ≤ arr[mid] ≤ arr[j+1]
Merge(arr[], left1,     mid, right1, j,         out[], out1,                out1+mid+j)
Merge(arr[], mid+1, left2, j+1,    right2, out[], out1+mid+j+1, out2)

left1 left2

right1 right2



Analysis

● Doing the two recursive calls in parallel but a sequential merge:

Work: same as sequential O(n log n)
Span: T(n)=1T(n/2)+O(n) which is O(n)

● Parallel merge makes work and span harder to compute…
- Each merge step does an extra O(log n) binary search to find how to split 

the smaller subarray
- To merge n elements total, do two smaller merges of possibly different 

sizes
- But worst-case split is (3/4)n and (1/4)n

● Happens when the two subarrays are of the same size (n/2) and the 
“smaller” subarray splits into two pieces of the most uneven sizes 
possible: one of size n/2, one of size 0



Analysis continued

For just a parallel merge of n elements:

● Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n)
● Span is T(n) = T(3n/4) + O(log n), which is O(log2 n)
● (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:

● Work is T(n) = 2T(n/2) + O(n), which is O(n log n)
● Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n)

So parallelism (work / span) is O(n / log2 n)

● Not quite as good as quicksort’s O(n / log n)
- But (unlike Quicksort) this is a worst-case guarantee

● And as always this is just the asymptotic result



Summary

Quicksort (best case)

O(n log n) - sequential

--> O(n) span - parallel calls to quicksort

--> O(log2 n) span - parallel partition

Mergesort (worst case)

O(n log n) - sequential

--> O(n) span - parallel calls to mergesort

--> O(log3 n) span - parallel merge



Toward sharing resources (memory)

So far, we have been studying parallel algorithms using the fork-join model

- Reduce span via parallel tasks

Fork-Join algorithms all had a very simple structure to avoid race conditions

- Each thread had memory “only it accessed”
● Example: each array sub-range accessed by only one thread

- Result of forked process not accessed until after join() called
- So the structure (mostly) ensured that bad simultaneous access wouldn’t occur

Strategy won’t work well when:

- Memory accessed by threads is overlapping or unpredictable
- Threads are doing independent tasks needing access to same resources (rather 

than implementing the same algorithm)




