CSE 332

Data Structures & Parallelism

Introduction to Multithreading &
Fork-Join Parallelism

Melissa Winstanley
Spring 2024

Updates

e Project 2 due THURSDAY

o Up to 2 late days available
e Project 3 will be released on Thursday as well

e EX7 Sorting due TOMORROW
e EXx8 Dijkstra’s due next Tuesday
e Regrade requests open for the midterm

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming — everything part of one sequence

Removing this assumption creates major challenges & opportunities

- Programming: Divide work among threads of execution and coordinate
(synchronize) among them

- Algorithms: How can parallel activity provide speed-up (more throughput:
work done per unit time)

- Data structures: May need to support concurrent access (multiple threads
operating on data at the same time) -

How did we get here?

Writing correct and efficient multithreaded code is often much more difficult than for
single-threaded (i.e., sequential) code -

- Especially in common languages like Java and C
- So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially faster at running

sequential programs
- About twice as fast every couple years /

But nobody knows how to continue this

- Increasing clock rate generates too much heat

- Relative cost of memory access is too high

- But we can keep making “wires exponentially smaller” (Moore’s “Law”), so put
multiple processors on the same chip (“multicore”)

What to do with multiple processors?

Your computer and phone probably have at least 4-8 processors

- Wait a few years and it will be 16, 32, ...
- The chip companies have decided to do this (no’t_a"la_vl”_)_

What can you do with them?

- Run multiple totally different programs at the same time
- Already do that? Yes, but with time-slicing
- Do multiple things at once in one program
- Our focus — more difficult
- Requires rethinking everything from asymptotic complexity to how to implement
data-structure operations

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential

- Many programmers confuse these concepts

Parallelism: Concurrency:
_——’\ ———
Use extra resources to solve a problem faster Correctly and efficiently manage
access to shared resources
work
requests
resources
There is some connection: resource

- Common to use threads for both
- If parallel computations need access to shared resources, then the concurrency needs to
be managed

An analogy

A program is like a recipe for a cook
- One cook who does one thing at a time! (Sequential)
Parallelism: (Let’s get the job done faster!)

- Have lots of potatoes to slice?
- Hire helpers, hand out potatoes and knives
- But too many chefs and you spend all your time coordinating

Concurrency: (We need to manage a shared resource)

- Lots of cooks making different things, but only 4 stove burners
- Want to allow access to all 4 burners, but not cause spills or incorrect burner
settings

Pseudocode for array sum:
Parallelism Example (note FORALL doesn'’t exist)

int sum(int[] arr) {
res = new int/[4];
= arr.length;

3-:l. =0; i < 4; i++) { //parallel iterations
res[i] = sumRange (arr,i*len/4, (i+1l) *len/4) ;

}

return res[0]+res[l]+res[2]+res[3];
} o == rted -
int sumRange (int[] arr, int lo, int hi) {
result = 0;
for (j=lo; j < hi; J++)
result += arr[]j];

return result;
—

Pseudocode for a hashtable:
Concurrency Example

class Hashtable<K,V> {

void insert (K key, V value) ({
int bucket = ..;
._aCE;event—other—inserts/lookups in table[bucket]
do the inserti
-—ﬁée—enable access to table[bucket]
}
V lookup (K key) {
(similar to insert, but can allow concurrent
lookups to same bucket)

}

Shared Memory with Threads

The model we will assume is shared memory with
—

Old story: A running program has

One program counter (current statement executing)
One call stack (with each stack frame holding local variables)

Obijects in the heap created by memory allocation (i.e., new)
- (nothing to do with data structure called a heap)

Static fields

New story:

- Aset of threads, each with its own program counter & call stack
- No access to another thread’s local variables

- Threads can (implicitly) share static fields / objects
- To communicate, write values to some shared location that another thread reads from

Old Story: one call stack, one pc

-Call k with local variabl e

Gal stac : gealyanabies and static fields
*pc determines current statement —_—
*local variables are numbers/null /
or heap references

Heap for all objects

New Story: Shared memory with Threads
'nreaas

eap for all objec
and static fields, share

Threads, each with own unshared oyal th/reads

call stack and “program counter”

Other models

We will focus on shared memory, but you should know several other models exist
and have their own advantages

Message-passing: Each thread has its own collection of objects.

\——r"-'f__l—.——— s
Communication is via explicitly sending/receiving messages

o Cooks working in separate kitchens, mail around ingredients
Dataflow: Programmers write programs in terms of a DAG. A node executes

after all of its predecessors in the graph
o Cooks wait to be handed results of previous steps

Data parallelism: Have primitives for things like “apply function to every
ata paralieflism. T

element of an array in parallel”

T\ L\ V) L

Our needs

To write a shared-memory parallel program, need new primitives
from a programming language or library

e \Ways to create and run multiple things at once

o Let’s call these things’tfhreads
e \Ways for threads to share memory

o Often just have threads with references to the same objects
e \Ways for threads to coordinate (a.k.a. synchronize)

o For now, a way for one thread to wait for another to finish
o Other primitives when we study concurrency

Java Basics

First learn some basics built into Java via java.lang.Thread

e Then a better library for parallel programming

To get a new thread running:

1. Define a subclass C of java.lang.Thread, overriding run
2. Create an object of class C

3. Call that object’s startsmethod——
® start sets off a new thread:-using TUn as its "main”

What if we instead called the run method of C?

e

e This would just be a normal method call, in the current thread

Let’'s see how to share memory and coordinate via an example...

Parallelism idea

Example: Sum elements of a large array

e Idea: Have 4 threads simultaneously sum_1/4 of the array
- Warning: This is an inferior first approach

- Create 4 thread objects, each given a portion of the work
- Call start(yomeach thread object to actually run it in parallel
- Wait for threads to finish usingm

- Addtogether their 4 answers for the final result
o alls el

First Attempt, Part 1

e

class SumThread ext s java.lang.Thread ({

int lo; // fields, assigned in the constructor

int hi; // so threads know what to do.

int[T—érr,

:|.nt // result - field used to communicate

across threads

SumThread(lnt[] a, int 1, int h) {
lo=1l; hi=h; arr=a;

}

public void run() { //override must have this type
Xf?r(int i=lo; i < hi; i++)

}

ans += arr[i];
e

First attempt, continued (wrong)

class SumThread extends java.lang.Thread {

g

}

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

fggkint i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*len/4);

for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans; -

Second attempt (still wrong)
class SumThread extends java.lang.Thread {

}

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for (int i=0; i < 4; i++) { // do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*len/4) ;

ts[il.start(); // start not run
}

for(int i=0; i < 4; i++) // combine results
ans += ts[i] .ans;
return ans;

Third attempt () fork join
int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i1 < 4; i++) { // do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*len/4);
ts[i] .start () ;
}
for(int i=0; i < 4; i++) { // combine results
ns += ts[i] .ans;
ts[i] .join(); // wait for helper to finish!

} S\\ ~C\A

return ans;

Fourth attempt ()

int (int[] , int numTs) { // parameterize by # of threads
int = arr.length;
int = 0;
SumThread|] = new SumThread[numTs] ;
for(int i=0; i < numTs; i++) {
ts[i] = new SumThread(arr,i*len/numTs, (i+l) *len/numTs) ;

ts[i] .start () ;

}

for(int i=0; i < numTs; i++) {
ans += ts[i] .ans;
ts[i].join() ;

}

return ans;

Problem 1: processors available to ME

4 processors

6 units of work per
processor

If 1 of those 4 processors
is busy with other work

One unit of

work has

to wait -

twice as
long!

(think of a “unit of
work” as 1 second)

24 units of work

If we had optimally
distributed work

8 units of work per
processor

Problem 2: unequal work

For some problems, dividing the array “equally” may result in subproblems that
take significantly different amounts of time.

Very small numbers > Very big numbers
AN J . AN AN J
Y Y Y Y
isPrime() isPrime() isPrime() isPrime()
=10 sec =15 sec = 30 sec = 50 sec

LA T

Solution attempt #1

The counterintuitive (?) solution to all these problems is to cut up our problem into
many pieces, far more than the number of processors

- But this will require changing our algorithm
- And for constant-factor reasons, abandoning Java'’s threads

\ T T J\ J
T T 1 T

ans0 ansl " ansN

— .,

ans

1. Forward-portable: Lots of helpers each doing a small piece

2. Processors available: Hand out “work chunks” as you go

3. Load imbalance: No problem if slow thread scheduled early enough
- Variation probably small anyway if pieces of work are small

BUT naive algorithm is poor

int sum(int[] arr) {
Suppose we create 1 thread to int numThreads arr.length’// 1000;
process every 1000 elements SumThread[] ts =

new SumThread[numThreads] ;

}

Then the “combining of results” part of the code will have arr.length / 1000 additions

e Linear in size of array (with constant factor 1/1000)
e Previously we had only 4 pieces (©(1) to combine)

In the extreme, suppose we create one thread per element — If we use a for loop to combine the
results, we have N iterations

e In either case we get a ©(N) algorithm with the combining of results as the
bottleneck....

A better idea: Divide and Conquer!

1) Divide problem into pieces recursively:

- Start with full problem at root
- Halve and make new thread until size is at some cutoff

2) Combine answers in pairs as we return from recursion (see diagram)

TR T

Soag s ~, ~,
\+/ \+/
— e

A better idea: Divide and Conquer!

This will start small, and ‘grow’ threads to fit the problem. This is straightforward to
implement using divide-and-conquer.

- Parallelism for the recursive calls

AP G Hh Hh e e

N/ N\ N\ N\ + "
\ 2o ~, ~, T~
\+/ \+/

e

Remember mergesort?

9 4|5 |3|1]6

8 | 2
Divide
82 9 4
Divide / \
Divid 8 2 9 4
ivide
\ Y
1 element 8 2 9 4
Merge 2’8 4 9
Merge R
2 489
Merge

é/ \5
S 316
SN

5 3 16
P N
S 3 1 6
AW Y
35 16
\/
1 356

1 23 45 689

Divide & conquer

O(n)

Sequential program
(no parallelism)

Create
threads

—

O(n)

——

Join &
combine

0@
Threads doing work L\

O(n)

Naive approach
(use loops to create threads)

Create

threadsQ

O(log n)

Threads doing work

C
Join &
combine

Divide & conquer

)

O(log n)

Fifth attempt (still using Java Threads)

class SumThread extends java.lang.Thread {

int lo; int hi; int[] arr;
int ans = 0; // result
SumThread (int[] a, int 1, int h) { ... }

public void run() { // override

if(hi - lo ‘<SEQUENTIAL_CUTO@
or (int i=lo; 1 < hi; i++)

Cf ans += arr[i];

else {
SumThread left =
T hew SumThread (arr,lo, (hi+lo)/2);
SumThread right =

new SumThread (arr, (hi+lo)/2,hi) ;

left.start();
right.start() ;

int sum(int[] arr) {
// just make one thread!
SumThread t =
-
new SumThread(arr,0,arr.length);

—————

t.run();
———./
return t.ans;

RC

eft.join(); // don’t move this up a line - why?

right. join() ;
ans = left.ans + right.ans;

Being realistic

In theory, you can divide down to single elements, do all your result-combining in
parallel and get optimal speedup

- Total time O(n / numProcessors + log n)

In practice, creating all those threads and communicating swamps the savings, so
do two things to help:

1. Use a sequential cutoff, typically around 500-1000
- Eliminates almost all the recursive thread creation (bottom levels of tree)
- Exactly like quicksort switching to insertion sort for small subproblems,
but more important here
2. Do not create two recursive threads; create one thread and do the other piece

of work “yourself”
- Cuts the number of threads created by another 2x

order of last 4 lines
is critical — why?

Half the threads!

// wasteful, don’t // better, do!

SumThread left = .. SumThread left = ..

SumThread right = .. SumThread right = .

left.start () ; left.start();

right.start() ; rm. run(); // normal function call!
left.join() ; left.join() ;

right.join() ; //Mt. join needed
ans=left.ans+right.ans; ans=left.ans+right.ans;

e If a language had built-in support for fork-join parallelism, | would expect this
hand-optimization to be unnecessary

e But the library we are using expects you to do it yourself
o And the difference is surprisingly substantial

e Again, no difference in theory

2 new threads at each step @

(and only leaf threads 2 T 3

do much work) + +
Total = 4 — ™5 6__— 7
15threads g +.g 10-*"~J1 12 .13 14,4 15

+ + + + /|. + + N
T O S AT T o

1 new thread

at each step 2
Total = *
8 threads &% "

J
J
T

+ + + T /" i,
A S S e

That library, finally
Even with all this care, Ji\@_th@g_d,s\are too “heavyweight”

e Constant factors, especially space overhead
e Creating 20,000 Java threads just a bad idea

The ForkJoin Framework is designed to meet the needs of divide-and-conquer
fork-Jom parallelism

e In the Java 8 standard libraries

e Section will focus on pragmatics/logistics

e Similar libraries available for other languages
o C/C++: Cilk (inventors), Intel's Thread Building Blocks
o C#: Task Parallel Library

(@)

e Library’'s implementation is a fascinating but advanced topic

Different terms, same basic idea

To use the ForkJoin Framework:
e Alittle standard set-up code (e.g., create a ForkJoinPool)

Java Threads: ForkJoin Framework:

Don’t subclass Thread Do subclass RecursiveTask<V>
Don’t override run Do override compute

Do not use an ans field Do return a Vv from compute-
Don’t call start Do call fork

Don’t just call join Do call join (which returns
answer)

Don'’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

Forkdoin Framework Version (missing imports)

class SumTask extends RecursiveTaskéE;:;;;;¥

int lo; int hi; int[] arr; ~——
SumTask (int[] a, int 1, int h) { }
protected(Integer) fompute () { // override
if(hi - lo < SEQUENTIAL_CUTOFF)
int ans = 0; // not a field
for(int i=lo; i < hi; i++)
ans += arr[i];
return ans;
else |
SumTask left
new SumTask (arr,lo, (hi+lo)/2);
SumTask right
new SumTask (arr, (hi+lo)/2,hi) ;

{{/
(static final ForkJoinPool POOL =
\\\\‘ng ForkJoinPool () ;

int sum(int[] arr) {
SumTask task
new SumTask (arr,0,arr.length)
return POOL.invoke (task) ;
// invoke returns the wvalue

}

left.fork(); // forks a thread and calls compute

int rightAns
int leftAns
return leftAns + rightAns;

right.compute(); // call directly
left.join(); // get result from left

Getting good results in practice

e Sequential threshold
- Library documentation recommends doing approximately 100-5000 basic
operations in each “piece” of your algorithm
o LW to "warm up”
- May see slow results before the Java virtual machine re-optimizes the
library internals
- Put your computations in a loop to see the “long-term benefit”

