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Shortest Path Applications

● Network routing
● Driving directions
● Cheap flight tickets
● Critical paths in project management (see textbook)
● …

BFS is great if all we care about is path length

- But what if we care about path cost (ie a weighted graph)?



Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today’s algorithm is wrong if edges can be negative
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Dijkstra’s Algorithm

● Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the “founders” of computer science; 1972 Turing Award; this 

is just one of his many contributions
- Sample quotation: “computer science is no more about computers than 

astronomy is about telescopes”

● The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”
- A priority queue will turn out to be useful for efficiency



Dijkstra’s Algorithm: Idea

● Initially, start node has cost 0 and all other nodes have cost
● At each step:

- Pick closest unknown vertex v
- Add it to the “cloud” of known vertices
- Update distances for nodes with edges from v

● That’s it! (Have to prove it produces correct answers)
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The Algorithm

dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          a.cost = b.cost + weight((b,a))
          a.pred = b
        }
  }
}
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Stopping short

●   How would this have worked differently if we were only interested in:
- The path from A to G?
- The path from A to D?
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A Greedy Algorithm

● Dijkstra’s algorithm
- For single-source shortest paths in a weighted graph (directed or 

undirected) with no negative-weight edges

● An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step

● A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited

● Turns out to be globally optimal



Greedy failure example

Making change

Use smallest # of coins to make 15 cents
Options: 25, 10, 5, 1

Use smallest # of coins to make 15 cents
Options: 25, 13, 10, 5, 1



Where are we?

What should we do after learning an algorithm?

● Prove it is correct
○ Not obvious!
○ We will sketch the key ideas

● Analyze its efficiency
○ Will do better by using a data structure we learned earlier!



Correctness: The Cloud (Rough Idea)

Suppose v is the next node to be marked known (“added to the cloud”)

● The best-known path to v must have only nodes “in the cloud”
- Since we’ve selected it, and we only know about paths through the cloud 

to a node right outside the cloud
● Assume the actual shortest path to v is different

- It won’t use only cloud nodes, (or we would know about it), so it must use 
non-cloud nodes

- Let w be the first non-cloud node on this path.
- The part of the path up to w is already known and must be shorter than 

the best-known path to v. So v would not have been picked.

Contradiction!

v

w

The Known Cloud Better path to v? 
No!

next

source



The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          a.cost = b.cost + weight((b,a))
          a.pred = b
        }
  }
}

Assume adjacency list
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dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
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O(V)

V times
O(V)
d times

Constant 
stuff



The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          a.cost = b.cost + weight((b,a))
          a.pred = b
        }
  }
}

Assume adjacency list

O(V) plus constant

V times
O(V)
d times

Constant 
stuff

V + c1 + V * (V + c2 + d*c3)   =>   V + V2 + V + V*d   =>   O(V2 + E)



Improving asymptotic running time

● So far: O(|V|2+ |E|)

● Due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as 

we process edges

● Solution?



Efficiency, second approach

dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          decreaseKey(a, “new cost - old cost”)
          a.pred = b
        }
  }
}

Assume adjacency list



Efficiency, second approach

dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          decreaseKey(a, “new cost - old cost”)
          a.pred = b
        }
  }
}

Assume adjacency list

V + c1 + V + V * (logV + c2 + d*(c3+logV))  =>  V + VlogV + V + E(logV)
    =>   O(V logV+ E logV)



Dense vs sparse again

● First approach: O(|V|2+ |E|) or: O(|V|2)
● Second approach: O(|V|log|V| + |E|log|V|)

So which is better?

● Sparse: O(|V|log|V|+|E|log|V|)     (if |E| > |V|, then O(|E|log|V|))
● Dense:  O(|V|2+ |E|) , or: O(|V|2)

But, remember these are worst-case and asymptotic

● Priority queue might have slightly worse constant factors
● On the other hand, for “normal graphs”, we might call decreaseKey rarely 

(or not percolate far), making |E|log|V| more like |E|



Example #2
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But what about negative weight edges?

● We said that Dijkstra’s algorithm doesn’t work for negative-weight edges
● But what if we want to support that?

● Problem: negative-weight edges ruin our correctness proof
○ The shortest path might involve nodes outside “the cloud”

● Solution: just do our edge calculations for all edges, but |V|-1 times
○ That way we MUST consider all paths that contain all nodes

● Enter Bellman-Ford



Bellman-Ford algorithm

bellmanFord(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  for (i = 0; i < |V| - 1)
    for each edge (b,a) in G
      if(b.cost + weight((b,a)) < a.cost){
        a.cost = b.cost + weight((b,a))
        a.pred = b
      }

  // Relax one more time to find a cycle
  for each edge (b,a) in G
    if(b.cost + weight((b,a)) < a.cost)
      // we found a cycle!
}


