
CSE 332
Data Structures & Parallelism

Shortest Paths

Melissa Winstanley
Spring 2024

Shortest Path Applications

● Network routing
● Driving directions
● Cheap flight tickets
● Critical paths in project management (see textbook)
● …

BFS is great if all we care about is path length

- But what if we care about path cost (ie a weighted graph)?

Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today’s algorithm is wrong if edges can be negative

500

100
100 100

100
-11

10 5

7

Dijkstra’s Algorithm

● Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the “founders” of computer science; 1972 Turing Award; this

is just one of his many contributions
- Sample quotation: “computer science is no more about computers than

astronomy is about telescopes”

● The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”
- A priority queue will turn out to be useful for efficiency

Dijkstra’s Algorithm: Idea

● Initially, start node has cost 0 and all other nodes have cost
● At each step:

- Pick closest unknown vertex v
- Add it to the “cloud” of known vertices
- Update distances for nodes with edges from v

● That’s it! (Have to prove it produces correct answers)

A

D
C

B

E

2

G

F
H

4

1
9

2

7

5

10

2

3

1

1

3

20

4

2

1

4

12

?

?
11

The Algorithm

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.pred = b
 }
 }
}

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

?

?

?

?

?

?

?
11

vertex known? cost pred
A
B
C
D
E
F
G
H

Order added to known set:

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

12

?

?
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

Order added to known set:

A, C, B, D

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

12

7

?
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E ≤ 12 C
F T 4 B
G ∞
H ∞ ≤ 4+3 = 7 F

Order added to known set:

A, C, B, D, F

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

12

7

8
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E ≤ 12 C
F T 4 B
G ∞ ≤ 7+1 = 8 H
H T 7 F

Order added to known set:

A, C, B, D, F, H

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

11

7

8
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E 12 ≤ 8+3=11 G
F T 4 B
G T 8 H
H T 7 F

Order added to known set:

A, C, B, D, F, H, G

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

11

7

8
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E T 11 G
F T 4 B
G T 8 H
H T 7 F

Order added to known set:

A, C, B, D, F, H, G, E

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

11

7

8
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E T 11 G
F T 4 B
G T 8 H
H T 7 F

Path from A to E:

Example #1

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

11

7

8
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E T 11 G
F T 4 B
G T 8 H
H T 7 F

Path from A to E:

Stopping short

● How would this have worked differently if we were only interested in:
- The path from A to G?
- The path from A to D?

Stopping short

A

D
C

B

E

2

G

F
H

4

1
9
2

7

5
10

2

3

1

1

3

20

4

2

1

4

11

7

8
11

vertex known? cost pred
A T 0
B T 2 A
C T 1 A
D T 4 A
E T 11 G
F T 4 B
G T 8 H
H T 7 F

Order added to known set:
A, C, B, D, F, H, G, E

How would this have worked differently if
we were only interested in:

- The path from A to G?
- The path from A to D?

A Greedy Algorithm

● Dijkstra’s algorithm
- For single-source shortest paths in a weighted graph (directed or

undirected) with no negative-weight edges

● An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step

● A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited

● Turns out to be globally optimal

Greedy failure example

Making change

Use smallest # of coins to make 15 cents
Options: 25, 10, 5, 1

Use smallest # of coins to make 15 cents
Options: 25, 13, 10, 5, 1

Where are we?

What should we do after learning an algorithm?

● Prove it is correct
○ Not obvious!
○ We will sketch the key ideas

● Analyze its efficiency
○ Will do better by using a data structure we learned earlier!

Correctness: The Cloud (Rough Idea)

Suppose v is the next node to be marked known (“added to the cloud”)

● The best-known path to v must have only nodes “in the cloud”
- Since we’ve selected it, and we only know about paths through the cloud

to a node right outside the cloud
● Assume the actual shortest path to v is different

- It won’t use only cloud nodes, (or we would know about it), so it must use
non-cloud nodes

- Let w be the first non-cloud node on this path.
- The part of the path up to w is already known and must be shorter than

the best-known path to v. So v would not have been picked.

Contradiction!

v

w

The Known Cloud Better path to v?
No!

next

source

The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.pred = b
 }
 }
}

Assume adjacency list

The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.pred = b
 }
 }
}

Assume adjacency list

O(V)

V times
O(V)
d times

Constant
stuff

The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.pred = b
 }
 }
}

Assume adjacency list

O(V) plus constant

V times
O(V)
d times

Constant
stuff

V + c1 + V * (V + c2 + d*c3) => V + V2 + V + V*d => O(V2 + E)

Improving asymptotic running time

● So far: O(|V|2+ |E|)

● Due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as

we process edges

● Solution?

Efficiency, second approach

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost - old cost”)
 a.pred = b
 }
 }
}

Assume adjacency list

Efficiency, second approach

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost - old cost”)
 a.pred = b
 }
 }
}

Assume adjacency list

V + c1 + V + V * (logV + c2 + d*(c3+logV)) => V + VlogV + V + E(logV)
 => O(V logV+ E logV)

Dense vs sparse again

● First approach: O(|V|2+ |E|) or: O(|V|2)
● Second approach: O(|V|log|V| + |E|log|V|)

So which is better?

● Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
● Dense: O(|V|2+ |E|) , or: O(|V|2)

But, remember these are worst-case and asymptotic

● Priority queue might have slightly worse constant factors
● On the other hand, for “normal graphs”, we might call decreaseKey rarely

(or not percolate far), making |E|log|V| more like |E|

Example #2

A

C
D

B

F

2

G

E

2

1 5

3

0

?

?

?

?

?

?

5
vertex known? cost pred

A 0
B
C
D
E
F
G

Order added to known set:

1
1

10
2

6

1

Example #2

A

C
D

B

F

2

G

E

2

1 5

3

0

2

3

4

1

6

2

5
vertex known? cost pred

A T 0
B T 3 E
C T 2 A
D T 1 A
E T 2 D
F T 4 C
G T 6 D

Order added to known set:

A, D, C, E, B, F, G

1
1

10
2

6

1

But what about negative weight edges?

● We said that Dijkstra’s algorithm doesn’t work for negative-weight edges
● But what if we want to support that?

● Problem: negative-weight edges ruin our correctness proof
○ The shortest path might involve nodes outside “the cloud”

● Solution: just do our edge calculations for all edges, but |V|-1 times
○ That way we MUST consider all paths that contain all nodes

● Enter Bellman-Ford

Bellman-Ford algorithm

bellmanFord(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 for (i = 0; i < |V| - 1)
 for each edge (b,a) in G
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.pred = b
 }

 // Relax one more time to find a cycle
 for each edge (b,a) in G
 if(b.cost + weight((b,a)) < a.cost)
 // we found a cycle!
}

