CSE 332
Data Structures & Parallelism
Shortest Paths

Melissa Winstanley
Spring 2024

Shortest Path Applications

Network routing

Driving directions

Cheap flight tickets

Critical paths in project management (see textbook)

BFS is great if all we care about is path length

- But what if we care about path cost (ie a weighted graph)?
\

Not as easy

100,100 10 S
100 100
-1 L7
500

Why BFS won’t work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights
We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles

- Today'’s algorithm is wrong if edW

Dijkstra’s Algorithm

e Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the “founders” of computer science; 1972 Turing Award; this
is just one of his many contributions
- Sample quotation: “computer science is no more about computers than
astronomy is about telescopes”

e The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”
- A priority queue will turn out to be useful for efficiency

Dijkstra’s Algorithm: Idea s
2

2

Initially, start node has cost 0 and all other nodes have cost
At each step:

- Pick closest unknown vertex v

- Add it to the “cloud” of known vertices

- Update distances for nodes with edges from v
That’s it! (Have to prove it produces correct answers)

The Algorithm

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if('a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight((b,a))
a.pred = b
}

vertex | known? cost pred
A

Order added to known set:

T O M MmO O @

Example #1 4

vertex | known? cost pred
A T 0

A C,B,D

B T 2 A

C T 1 A

D T 4 A
Order added to known set: E <12 C

F <4 B

G

H

Example #1 4

vertex | known? cost pred

A T 0
! B T 2 A
C T 1 A
D T 4 A
Order added to known set: E <12 C
F T 4 B

A CB,D,F G _
H ©<4+3=7| F

Example #1 4

A

4 B
C

D

Order added to known set: E
F

A CB,D FH G
H

vertex | known?

T

— | = -

cost

pred

M IT| WO > > >

Example #1 4

vertex | known?
A T

! B T
C T
D T

Order added to known set: E
F T
A, C,B,D,FH G G T
H T

cost
0

pred

M I WO > > >

Example #1

Order added to known set:

known?

cost

pred

=2

A C,B,D,FH G E

N

oo

—|d = A4

M I oo > > >

Example #1 4

vertex | known? cost pred
A T 0

=2

Path from A to E:

N

T O MmO Ol w

—| A 4 |4 4|4
oo -

M I o OI> > >

Example #1

known?

cost

pred

Path from A to E:

NN

N

oo

—|A = |4

M I oo > > >

Stopping short

e How would this have worked differently if we were only interested in:
- The path from Ato G?
- The path from Ato D?

vertex | known? cost pred
A T 0
B T 2 A
C T 1 A
Order added 1o known set:
A CB,D,FH G E [E) 1 141 g
How would this have worked differently if
we were only interested in: F T 4 B
- The path from Ato G? G T 8 H
- The path from Ato D? H T 7 E

A Greedy Algorithm

e Dijkstra’s algorithm
- For single-source shortest paths in a weighted graph (directed or
undirected) with no negative-weight edges

e An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step
e Alocally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited

e Turns out to be globally opti

Greedy failure example

Making change

Use smallest # of coins to make 5 cents
Options: 25, 10, 5, 1

0,5

Use smallest # of coins to make 15 cents
Options: 25, 13, 10, 5, 1 7_ |

\3,), |

Where are we?

What should we do after learning an algorithm?

e Prove it is correct
o Not obwteus!
o We will sketch the key ideas
e Analyzel lciency
o Will do better by using a data structure we learned earlier!

Better path to v?
No!

source
Suppose v is the next node 16 be marked known (“added to the cloud”)

e The best-known path to v must have only nodes “in the cloud”
- Since we've selected it, and Wwe onty know about paths through the cloud
to a node right outside the cloud
e Assume the actual shortest path to v is different
- It won’t use only cloud nodes, (or we would know about it), so it must use
non-cloud nodes
- Let w be the first non-cloud node on this path.
- The part of the path up to w is already known and must be shorter than
the best-known path to v. So v would not have been picked.

Contradiction!

Assume adjacency list
The Algorithm - asymptotic running time

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if('a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight((b,a))
a.pred = b
}

Assume adjacency list
The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) { OV
for each node: x.cost=infinity, x.known=false .J—)
c start.cost = 0

vhile (not all nodes are known) | i Vimes
b = find unknown node with smallest cost oV
b.known = true ”"S_L“
ifor each edge (bja) in G }Q‘t'mes
f('a.known)
if(b.cost + weight((b,a)) < a.cost) {
*N\ a.cost = b.cost + weight((b,a))
AN a.pred = b

Constant
stuff

}
}
}

Assume adjacency list
The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0

while (not all nodes are known) { V times
b = find unknown node with smallest cost O

} O(V) plus constant

c————

b.known = true

for each edge (b,a) in G }.dthnes
if('a.known)
if(b.cost + weight((b,a)) < a.cost) {
n n
a.cost = b.cost + weight((b,a)) s(,:tszSta t

a.pred b

}
}

) Vo +@f{(Vrc, @) = V+V2+VAVd => OV+E)

Improving asymptotic running time

e So far: O(|V2* |E|)

e Due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as
we process edges

e Solution?

Assume adjacency list
Efficiency, second approach

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
—>build-heap with all nodes C)CVO
while (heap is not empty) {
~—>b = deleteMin() \()%BQVN
b.known = true
for each edge (b,a) in G
if('a.known)
if (b.cost + weight((b,a)) < a.cost) {
—>decreaseKey(a, “"new cost - old cost”) \Ofyd
a.pred = b
}

Assume adjacency list

Efficiency, second approach

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false

start.cost = 0
build-heap with all nodes
while (heap is not empty) ({
b = deleteMin ()
b.known = true
for each edge (b,a) in G
if('a.known)
if (b.cost + weight((b,a)) < a.cost) {
decreaseKey(a, “new cost - old cost”)
a.pred = b
}

} V+c1+V+_l—*(+c2+c_lf(c3) => V 4 ViogV+ V +E(logV)

=> O(V logV+ E logV)

Dense vs sparse again
e First approach: O(V[+ |E]) or{OVA)
e Second approach: O(|V|log|V] m

So which is better?

o Sparse: O(|Vl]log|V|+|E[log|V]) (if |[E| > [V], then O(|E|log|V]))
e Dense: O(|V|>* |E|), or: O(|V[?)

But, remember these are worst-case and asymptotic

e Priority gueue might have slightly worse constant factors
e On the other hand, for “normal graphs”, we might call decreaseKey rarely
(or not percolate far), making |E|log|V| more like |E]

Example #2

2

vertex | known? cost pred
A 0

Order added to known set:

@M m ool

Example #2

vertex | known? cost pred
A T 0

Order added to known set:

A, D,C EBFG

QMmO 0O w
i e A N R
ol N W
OO O X>» > m

But what about negative weight edges?

e \We said that Dijkstra’s algorithm doesn’t work for negative-weight edges
e But what if we want to support that?

e Problem: negative-weight edges ruin our correctness proof
o The shortest path might involve nodes outside “the cloud”

e Solution: just do our edge calculations for all edges, but |V|-1 times
o That way we MUST consider all paths that contain all nodes

e Enter Bellman-Ford

Bellman-Ford algorithm Q (v [;>

L
=0 N
bellmanFord (Graph G, Node start) ({

for each node: x.cost=infinity, x.known=false

start.cost = 0
\/ for (i=0;i<|V|—1)/

E{,~>for eachdfgggﬂthaL in G
if (b.cost + weight((b,a)) < a.cost) { (f}&)Cjk

a.cost = b.cost + weight((b,a))
a.pred = b
}

// Relax one more time to find a cycle

for each edge in G
KL_i (b.cost + weight ((b,a) .cost)
}

// we found a cycle!

