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Shortest Path Applications

Network routing

Driving directions

Cheap flight tickets

Critical paths in project management (see textbook)

BFS is great if all we care about is path length

- But what if we care about path cost (ie a weighted graph)?
\



Not as easy
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Why BFS won’t work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights
We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles

- Today'’s algorithm is wrong if edW




Dijkstra’s Algorithm

e Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the “founders” of computer science; 1972 Turing Award; this
is just one of his many contributions
- Sample quotation: “computer science is no more about computers than
astronomy is about telescopes”

e The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”
- A priority queue will turn out to be useful for efficiency



Dijkstra’s Algorithm: Idea s
2
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Initially, start node has cost 0 and all other nodes have cost
At each step:

- Pick closest unknown vertex v

- Add it to the “cloud” of known vertices

- Update distances for nodes with edges from v
That’s it! (Have to prove it produces correct answers)



The Algorithm

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if('a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight((b,a))
a.pred = b
}



vertex | known? cost pred
A

Order added to known set:
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Example #1 4

vertex | known? cost pred
A T 0

A C,B,D

B T 2 A

C T 1 A

D T 4 A
Order added to known set: E <12 C

F <4 B

G

H



Example #1 4

vertex | known? cost pred

A T 0
! B T 2 A
C T 1 A
D T 4 A
Order added to known set: E <12 C
F T 4 B

A CB,D,F G _
H ©<4+3=7| F



Example #1 4
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Order added to known set: E
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Example #1 4

vertex | known?
A T

! B T
C T
D T

Order added to known set: E
F T
A, C,B,D,FH G G T
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Example #1

Order added to known set:
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Example #1 4

vertex | known? cost pred
A T 0

=2

Path from A to E:
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Example #1

known?

cost

pred

Path from A to E:
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Stopping short

e How would this have worked differently if we were only interested in:
- The path from Ato G?
- The path from Ato D?



vertex | known? cost pred
A T 0
B T 2 A
C T 1 A
Order added 1o known set:
A CB,D,FH G E [E) 1 141 g
How would this have worked differently if
we were only interested in: F T 4 B
- The path from Ato G? G T 8 H
- The path from Ato D? H T 7 E




A Greedy Algorithm

e Dijkstra’s algorithm
- For single-source shortest paths in a weighted graph (directed or
undirected) with no negative-weight edges

e An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step
e Alocally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited

e Turns out to be globally opti




Greedy failure example

Making change

Use smallest # of coins to make 5 cents
Options: 25, 10, 5, 1

0,5

Use smallest # of coins to make 15 cents
Options: 25, 13, 10, 5, 1 7_ |

\3,), |



Where are we?

What should we do after learning an algorithm?

e Prove it is correct
o Not obwteus!
o We will sketch the key ideas
e Analyzel lciency
o Will do better by using a data structure we learned earlier!



Better path to v?
No!

source
Suppose v is the next node 16 be marked known (“added to the cloud”)

e The best-known path to v must have only nodes “in the cloud”
- Since we've selected it, and Wwe onty know about paths through the cloud
to a node right outside the cloud
e Assume the actual shortest path to v is different
- It won’t use only cloud nodes, (or we would know about it), so it must use
non-cloud nodes
- Let w be the first non-cloud node on this path.
- The part of the path up to w is already known and must be shorter than
the best-known path to v. So v would not have been picked.

Contradiction!



Assume adjacency list
The Algorithm - asymptotic running time

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if('a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight((b,a))
a.pred = b
}



Assume adjacency list
The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) { OV
for each node: x.cost=infinity, x.known=false .J—)
c start.cost = 0

vhile (not all nodes are known) | i Vimes
b = find unknown node with smallest cost oV
b.known = true ”"S_L“
ifor each edge (bja) in G }Q‘t'mes
f('a.known)
if(b.cost + weight((b,a)) < a.cost) {
*N\ a.cost = b.cost + weight((b,a))
AN a.pred = b

Constant
stuff

}
}
}



Assume adjacency list
The Algorithm - asymptotic running time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0

while (not all nodes are known) { V times
b = find unknown node with smallest cost O

} O(V) plus constant

c————

b.known = true

for each edge (b,a) in G }.dthnes
if('a.known)
if(b.cost + weight((b,a)) < a.cost) {
n n
a.cost = b.cost + weight((b,a)) s(,:tszSta t

a.pred b

}
}

) Vo +@f{(Vrc, @) = V+V2+VAVd => OV+E)



Improving asymptotic running time

e So far: O(|V2* |E|)

e Due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as
we process edges

e Solution?



Assume adjacency list
Efficiency, second approach

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
—>build-heap with all nodes C)CVO
while (heap is not empty) {
~—>b = deleteMin() \()%BQVN
b.known = true
for each edge (b,a) in G
if('a.known)
if (b.cost + weight((b,a)) < a.cost) {
—>decreaseKey(a, “"new cost - old cost”) \Ofyd
a.pred = b
}



Assume adjacency list

Efficiency, second approach

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false

start.cost = 0
build-heap with all nodes
while (heap is not empty) ({
b = deleteMin ()
b.known = true
for each edge (b,a) in G
if('a.known)
if (b.cost + weight((b,a)) < a.cost) {
decreaseKey(a, “new cost - old cost”)
a.pred = b
}

} V+c1+V+\_l—*(+c2+c_lf(c3) => V 4 ViogV+ V +E(logV)

=> O(V logV+ E logV)




Dense vs sparse again
e First approach: O(V[+ |E]) or{OVA)
e Second approach:  O(|V|log|V] m

So which is better?

o Sparse: O(|Vl]log|V|+|E[log|V])  (if |[E| > [V], then O(|E|log|V]))
e Dense: O(|V|>* |E|), or: O(|V[?)

But, remember these are worst-case and asymptotic

e Priority gueue might have slightly worse constant factors
e On the other hand, for “normal graphs”, we might call decreaseKey rarely
(or not percolate far), making |E|log|V| more like |E]




Example #2

2

vertex | known? cost pred
A 0

Order added to known set:
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Example #2

vertex | known? cost pred
A T 0

Order added to known set:

A, D,C EBFG
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But what about negative weight edges?

e \We said that Dijkstra’s algorithm doesn’t work for negative-weight edges
e But what if we want to support that?

e Problem: negative-weight edges ruin our correctness proof
o The shortest path might involve nodes outside “the cloud”

e Solution: just do our edge calculations for all edges, but |V|-1 times
o That way we MUST consider all paths that contain all nodes

e Enter Bellman-Ford



Bellman-Ford algorithm Q (v [;>

L
=0 N
bellmanFord (Graph G, Node start) ({

for each node: x.cost=infinity, x.known=false

start.cost = 0
\/ for (i=0;i<|V|—1)/

E{,~>for eachdfgggﬂthaL in G
if (b.cost + weight((b,a)) < a.cost) { (f}&)Cjk

a.cost = b.cost + weight((b,a))
a.pred = b
}

// Relax one more time to find a cycle

for each edge in G
KL_i (b.cost + weight ((b,a) .cost)
}

// we found a cycle!



