
CSE 332
Data Structures & Parallelism

Graph Traversals

Melissa Winstanley
Spring 2024

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e.,
there exists a path) from v

● Possibly “do something” for each node (an iterator!)
○ E.g. Print to output, set some field, etc.

Related Questions:

● Is an undirected graph connected?
● Is a directed graph weakly / strongly connected?

○ For strongly, need a cycle back to starting node

Basic idea:

● Keep following nodes
● But “mark” nodes after visiting them, so the traversal terminates and processes

each reachable node exactly once

Graph Traversal: Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet();
 pending.add(start)
 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
}

Running time and options

● Assuming add and remove are O(1), entire traversal is O(|E|)
- Use an adjacency list representation

● The order we traverse depends entirely on how add and remove
work/are implemented

- Depth-first graph search (DFS): a stack
- Breadth-first graph search (BFS): a queue

● DFS and BFS are “big ideas” in computer science
- Depth: recursively explore one part before going back to the other

parts not yet explored
- Breadth: Explore areas closer to the start node first

Recursive DFS, Example: trees

A tree is a graph and DFS and BFS are particularly easy to “see”

Order processed: A, B, D, E, C, F, G, H

● Exactly what we called a “pre-order traversal” for trees
● The marking is not needed here, but we need it to support arbitrary graphs ,

we need a way to process each node exactly once

A

B

F

C

ED

HG

DFS(Node start) {
 mark and “process” (eg print) start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

DFS with a stack, Example: trees

A tree is a graph and DFS and BFS are particularly easy to “see”

Order processed:

● A different but perfectly fine traversal

A

B

F

C

ED

HG

DFS2(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

stack

BFS with a queue, Example: trees

A tree is a graph and DFS and BFS are particularly easy to “see”

Order processed:

● A “level-order” traversal

A

B

F

C

ED

HG

BFS(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}queue

DFS/BFS Comparison

Breadth-first search:

● Always finds shortest paths, i.e., “optimal solutions
- Better for “what is the shortest path from x to y”

● Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree of height h, 2h nodes in
queue)

Depth-first search:

● Can use less space in finding a path
- If longest path in the graph is p and highest out-degree is d then DFS stack never has

more than d*p elements

A third approach: Iterative deepening (IDDFS):

● Try DFS but don’t allow recursion more than K levels deep.
- If that fails, increment K and start the entire search over

● Like BFS, finds shortest paths. Like DFS, less space.

Saving the path

● Our graph traversals can answer the “reachability question”:
- “Is there a path from node x to node y?”

● Q: But what if we want to output the actual path?
- Like getting driving directions rather than just knowing it’s possible to get

there!

● A: Like this:
- Instead of just “marking” a node, store the previous node along the path

(when processing u causes us to add v to the search, set v.pred field to
be u)

- When you reach the goal, follow pred fields backwards to where you
started (and then reverse the answer)

- If just wanted path length, could put the integer distance at each node
instead

Example using BFS

What is a path from Seattle to Austin?

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Chicago

Dallas

Seattle

San Francisco

Salt Lake City

Austin

Queue

