CSE 332
Data Structures & Parallelism
Graphs

Melissa Winstanley
Spring 2024

Reminders

e Exercise 6 (hashing) due tomorrow 11:59pm
e P2 CP2 due Thursday, 11:59pm
e Exercise 7 (sorting) due next week

Our schedule

- This week: graphs

- Next week: parallelism
Need to make sure you have what you need for P3!

- Last week of class: more graphs

Today: Graphs

- Intro & definitions

Problem space

Problems where the dataset is best represented as items and the relationships
between them

Examples:

- Friendships

- Family trees
- .7

Graphs

e Agraph is a formalism for representing relationships among items

- Very general definition because very general concept
e Agraphis a pair Luke

G = (V,E) Han
- Aset of vertices, also known as nodes
vertices, . nodes
V= {v,v,,.,v}
- Aset of edges. ela

E = {e,,e,,..,e) V = {Han,Leia,Luke}
- Each edge e, is a pair of ve.rtlces((vj ' V) \ E = { (Luke ,Leia) ,
- An edge “connects” the vertices | (Han,Leia)

e Graphs can b@ﬁét’e@or@_ndireoted j (Leia,Han) }

An ADT?

e Can think of graphs as an ADT with operations like isEdge ((vj ')
e Butitis unclear what the “standard operations” are

e Instead we tend to develop algorithms over graphs and then use data
structures that are efficient for those algorithms

e Many important problems can be solved by:

1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

e To make the formulation easy and standard, we have a lot of standard
terminology about graphs

—_

Undirected Graphs

e In undirected graphs, edges have no specific direction
o Edges are always “two-way” D /);1

e Thus, (u,v) € Eimplies (v,u) € E.
o Only one of these edges needs to be in the set; the other is implicit

o er of edges containing that vertex

o Put another way: the number of adjacent vertices

Directed Graphs

In directed graphs, edges have a direction &

D D

B C o

A A
Thus, (u,v) € E does’a,Qtimply (v,u) € E.
o Let (u,v) € Emeanu -
o Calluthandvthe@
LrLDggree of a vertex: number of in-bound edges, C .
i.e., edges where the vertex is the destination ¥a

CBLJE;QEQLG_G of a vertex: number of out-bound edges o _\}")
l.e., edges where the vertex is the source

2 edges here

Self-edges, connectedness

o self-edge)a.k.a. a loop is an edge of the form (u,u) C@
O

nding on the use/algorithm, a graph may have:
m No self edges
m Some self edges
m All self edges (often therefore implicit, but we will be explicit)

e Anode can have a degree / in-degree / out-degree of zero

e A graph does/nothave to be connected (in an undirected graph, this means

e —

we can follow edges from any node to every other node), even if every node
has non-zero degree

Some graphs

What are the vertices and what are the edges? Self loops? Directed?

e \Web pages with links

e Facebook friends

e “Input data” for the Kevin Bacon game
-o—>Methods in a program that call each other

e Road maps (e.g., Google maps)

e Airline routes

e Family trees
—e—> Course prerequisites

[

Wow: Using the same algorithms for problems across so many domains
sounds like “core computer science and engineering”

Q\ 3+
More notation J_._Q D
B C

ForagraphG = (V,E): A
e (|Vis the number of vertices
s is the number of edges

o Minimum? Q \/(\/4-\\ _\/ v = {A, B, C, D}

o Maximum for undirected? __"2_ E = {(C, B),

o Maximum for directed? \v* —V/ (A, B),

» (B, &),
Qv (C, D)}
o I[f (u,v) € E
o Then v is a neighbor of u, i.e., v is adjacent to u
o Order matters Tor directed edges
m uis notadjacentto vunless (v,u) € E

V\ielghtew

In a weighted graph, each edge has a weight a.k.a. cost

e Typically numeric (most examples will use ints)
e _Orthogonal to whether graph is directed
e Some graphs allow negative weights; many don't

. 20
Clinton O%O Mukilteo

Kingston O 20 O Edmonds

Bainbridge 35
60 Seatftle

Bremerton

Paths and Cycles

° A(pathgis a Ii_st_gj_\g_aﬂic_eg[vo,vl,...,vn] such that

(v.,v.,,) € E forall0 £ i < n. Say “a path from v, to v
e Acycle is a path that begins and ends at the same node (v,==v_)

& Seattle(|

———_~/Chicago

/ ;
San Francisco : () Dallas

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

e Path length: Number of edges in a path (also called “unweighted cost”)
e Path cost: Sum of the weights of each edge

Example where:
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

Seattle Chicago

2.5 length(P) = 4
cost(P) = 9.5

San Francisco Dallas

Paths/cycles in directed graphs

Example: D
C
A
B
Directed? What if undirected?
Is there a path from A to D7 N \ﬁ
Does the graph contain any cycles? N \}

Undirected graph connectivity

An undirected graph is connected if for all pairs of vertices u, v, there exists a path

fromutowv ‘
N:)a/‘{: oo oy

Connected graph Disconnected graph

An undirected graph i a.k.a. fully connected if for all pairs of vertices
u, v, there exists an edge fromu to v

What's
missing?

Directed graph connectivity

e Adirected graph is strongly connected if
there is a path from every vertex to every
other vertex

e Adirected graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

e A complete a.k.a. fully connected directed
graph has an edge from every vertex to

every other vertex (plus self
edges)

Trees as graphs

When talking about graphs, we say a tree is
a graph that is:

- lindirected

- Acyclic
- Connected

So all trees are graphs, but not all graphs
are trees

How does this relate to the trees we know
and love?...

Rooted Trees

We are more accustomed to
rooted trees where:
- We identify a unique
(“special”) root
- We think of edges as

(directed:;parent to children

Given a tree, once you pick a
root, you have a unique rooted
tree (just drawn differently and
with undirected edges)

Rooted Trees (Another example)

e \We are more accustomed to
rooted trees-where:
- We identify a unique
(“special”) root
- We think of edges as
dﬂg:led: parent to children

e Given a tree, once you pick a
root, you have a unique rooted
tree (just drawn differently and
with undirected edges)

Directed acyclic graphs@

e ADAG is a directed graph with no (directed) cycles

—

- Every rooted directed tree is a DAG

e But not every DAG is a rooted directed tree:

Not a rooted directed tree, has a
cycle (in the undirected sense)

- Every DAG is a directed graph
e But not every directed graph is a DAG:

(Nele

Density / sparsity

The range of numbers of edges is really wide

Recall: In an undirected graph, @< [E|< V)

Recall: In a directed graph: 0<I|E|<|V|?
So for any graph, E| is Oﬂy,l_z).

One more fact: If an undirected graph is connected, then |E|>|V|-1

Because |E| is often much smaller than its maximum size, we do not
always approximate as |E| as O(|V|?)

This is a correct bound, it just is often not tight
f it is tight, i.e.(JE| is ©(V[?))

Mote sloppily;-dense means “lots of edges”

Meor€ sloppily, Sparse means “most (possible) edges missing

Examples again

Which might be dense? Which might be sparse?

e \Web pages with links

e Facebook friends

e ‘“Input data” for the Kevin Bacon game
——&> Methods in a program that call each other

e Road maps (e.g., Google maps)

2> Airline routes

e Family trees

e Course prerequisites

[

What is the Data Structure?

e So graphs are really useful for lots of data and questions
- For example, “what’s the lowest-cost path from x to y”

e But we need a data structure that represents graphs

e The “best one” can depend on:
- P-Fc?perties of the graph (e.g., ggr1_se Versus sparse)
- The common queries (e.g., “is (u,v) an edge?” versus “what are the
neighbors of node u?”)

e So we'll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency matrix NN

e Assign each node a number from 0 to |V|-1
e A |V|x|V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
- IfMis the matrix, then M[u] [v] == true means there is an edge from

utov To

B C D

F T F F

Adjacency matrix properties

e Running time in terms of@and@o:

Get a vertex’s out-edges: (> (\)
Get a vertex’s in-edges: q\/\
Decide if some edge exists: Q(\‘)
Insert an edge:) (\)

Delete an edge: ©(N

e Space requirements: \/7_

e Best for sparse or({dense graphs?

Adjacency List

e Assign each node a number from 0 to |V|-1

e An array of length | v| in which each entry stores a list of all adjacent vertices
(e.g., linked list) N,

w
O

O 0 w &
|
>

Adjacency List D

B
o ‘out-degree of a vertex” A

e Running time in terms of |V|, |E|, D to:
—>Get a vertex's out-edges: ()| ™

Get a vertex’s in-edges: O VD

Decide if some edge exists: o (D)
Insert an edge: Q) (V)

oy

Delete an edge: (O (D

e Space requirements: \H_E

e Best for dense graphs?

Which is better?

e |t depends
e Butin reality...

e ...a lot of problems have sparse graphs...
o Streets form grids
o Airlines rarely fly to all possible cities

e ...soyou'll see lots of adjacency lists

