
CSE 332
Data Structures & Parallelism

Graphs

Melissa Winstanley
Spring 2024

Reminders

● Exercise 6 (hashing) due tomorrow 11:59pm
● P2 CP2 due Thursday, 11:59pm
● Exercise 7 (sorting) due next week

Our schedule

- This week: graphs
- Next week: parallelism

- Need to make sure you have what you need for P3!
- Last week of class: more graphs

Today: Graphs

- Intro & definitions

Problem space

Problems where the dataset is best represented as items and the relationships
between them

Examples:

- Friendships
- Family trees
- ...?

Graphs

● A graph is a formalism for representing relationships among items
- Very general definition because very general concept

● A graph is a pair
G = (V,E)

- A set of vertices, also known as nodes
V = {v1,v2,…,vn}

- A set of edges
E = {e1,e2,…,em}

- Each edge ei is a pair of vertices (vj,vk)
- An edge “connects” the vertices

● Graphs can be directed or undirected

Luke

Leia

Han

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

An ADT?

● Can think of graphs as an ADT with operations like isEdge((vj,vk))

● But it is unclear what the “standard operations” are

● Instead we tend to develop algorithms over graphs and then use data
structures that are efficient for those algorithms

● Many important problems can be solved by:

1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

● To make the formulation easy and standard, we have a lot of standard
terminology about graphs

Undirected Graphs

● In undirected graphs, edges have no specific direction
○ Edges are always “two-way”

● Thus, (u,v) ∈ E implies (v,u) ∈ E.
○ Only one of these edges needs to be in the set; the other is implicit

● Degree of a vertex: number of edges containing that vertex
○ Put another way: the number of adjacent vertices

D

C

B
A

Directed Graphs

● In directed graphs, edges have a direction

or

● Thus, (u,v) ∈ E does not imply (v,u) ∈ E.
○ Let (u,v) ∈ E mean u → v
○ Call u the source and v the destination

● In-Degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination

● Out-Degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

D

C
BA

D
CB

A

2 edges here

Self-edges, connectedness

● A self-edge a.k.a. a loop is an edge of the form (u,u)
○ Depending on the use/algorithm, a graph may have:

■ No self edges
■ Some self edges
■ All self edges (often therefore implicit, but we will be explicit)

● A node can have a degree / in-degree / out-degree of zero

● A graph does not have to be connected (in an undirected graph, this means
we can follow edges from any node to every other node), even if every node
has non-zero degree

Some graphs

What are the vertices and what are the edges? Self loops? Directed?

● Web pages with links
● Facebook friends
● “Input data” for the Kevin Bacon game
● Methods in a program that call each other
● Road maps (e.g., Google maps)
● Airline routes
● Family trees
● Course prerequisites
● …

Wow: Using the same algorithms for problems across so many domains
sounds like “core computer science and engineering”

More notation

For a graph G = (V,E):

● |V| is the number of vertices
● |E| is the number of edges

○ Minimum? _________
○ Maximum for undirected? _________
○ Maximum for directed? _________

● If (u,v) ∈ E
○ Then v is a neighbor of u, i.e., v is adjacent to u
○ Order matters for directed edges

■ u is not adjacent to v unless (v,u) ∈ E

D
CB

A

V = {A, B, C, D}
E = {(C, B),
 (A, B),
 (B, A),
 (C, D)}

Weighted graphs

In a weighted graph, each edge has a weight a.k.a. cost

● Typically numeric (most examples will use ints)
● Orthogonal to whether graph is directed
● Some graphs allow negative weights; many don’t

Mukilteo

Edmonds

Seattle

Clinton

Kingston

Bainbridge

Bremerton

20

30

35

60

Paths and Cycles

● A path is a list of vertices [v0,v1,…,vn] such that
 (vi,vi+1)∈ E for all 0 ≤ i < n. Say “a path from v0 to vn”

● A cycle is a path that begins and ends at the same node (v0==vn)

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Chicago

Dallas

Seattle

San Francisco

Salt Lake City

Path Length and Cost

● Path length: Number of edges in a path (also called “unweighted cost”)
● Path cost: Sum of the weights of each edge

Example where:
 P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

Chicago

Dallas

Seattle

San Francisco

Salt Lake City 2.5
2.5

2

2

3

3.5

2

2.5
length(P) = 4
cost(P) = 9.5

Paths/cycles in directed graphs

Example:

Directed? What if undirected?

Is there a path from A to D?

Does the graph contain any cycles?

A

B

C

D

Undirected graph connectivity

An undirected graph is connected if for all pairs of vertices u,v, there exists a path
from u to v

Connected graph Disconnected graph

An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices
u,v, there exists an edge from u to v

What’s
missing?

Directed graph connectivity

● A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

● A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

● A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex (plus self

edges)

Trees as graphs

When talking about graphs, we say a tree is
a graph that is:

- Undirected
- Acyclic
- Connected

So all trees are graphs, but not all graphs
are trees

How does this relate to the trees we know
and love?...

A

B

F

C

ED

HG

Rooted Trees

● We are more accustomed to
rooted trees where:

- We identify a unique
(“special”) root

- We think of edges as
directed: parent to children

● Given a tree, once you pick a
root, you have a unique rooted
tree (just drawn differently and
with undirected edges)

A

B

F

C

ED

HG

A

B

F

C

ED

HG

Rooted Trees (Another example)

● We are more accustomed to
rooted trees where:

- We identify a unique
(“special”) root

- We think of edges as
directed: parent to children

● Given a tree, once you pick a
root, you have a unique rooted
tree (just drawn differently and
with undirected edges)

A

B

F

C

ED

HG

A

B

F

C

ED

HG

Directed acyclic graphs (DAGs)

● A DAG is a directed graph with no (directed) cycles
- Every rooted directed tree is a DAG

● But not every DAG is a rooted directed tree:

- Every DAG is a directed graph
● But not every directed graph is a DAG:

Not a rooted directed tree, has a
cycle (in the undirected sense)

Density / sparsity

The range of numbers of edges is really wide

● Recall: In an undirected graph, 0 ≤ |E| < |V|2
● Recall: In a directed graph: 0 ≤ |E| ≤ |V|2
● So for any graph, |E| is O(|V|2)
● One more fact: If an undirected graph is connected, then |E| ≥ |V| - 1
● Because |E| is often much smaller than its maximum size, we do not

always approximate as |E| as O(|V|2)
- This is a correct bound, it just is often not tight
- Dense: If it is tight, i.e., |E| is 𝚹(|V|2)

● More sloppily, dense means “lots of edges”
- Sparse: |E| is O(|V|)

● More sloppily, sparse means “most (possible) edges missing

Examples again

Which might be dense? Which might be sparse?

● Web pages with links
● Facebook friends
● “Input data” for the Kevin Bacon game
● Methods in a program that call each other
● Road maps (e.g., Google maps)
● Airline routes
● Family trees
● Course prerequisites
● …

What is the Data Structure?

● So graphs are really useful for lots of data and questions
- For example, “what’s the lowest-cost path from x to y”

● But we need a data structure that represents graphs

● The “best one” can depend on:
- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., “is (u,v) an edge?” versus “what are the

neighbors of node u?”)

● So we’ll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency matrix

● Assign each node a number from 0 to |V|-1
● A |V|x|V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

- If M is the matrix, then M[u][v] == true means there is an edge from
u to v

D
CB

A

F T F F

T F F F

F T F T

F F F F

A B C D

A

B

C

D
Fr

om

To

Adjacency matrix properties

● Running time in terms of |V| and |E| to:
- Get a vertex’s out-edges:

- Get a vertex’s in-edges:

- Decide if some edge exists:

- Insert an edge:

- Delete an edge:

● Space requirements:

● Best for sparse or dense graphs?

D
CB

A

F T F F

T F F F

F T F T

F F F F

A B C D

A

B

C

D

To

Fr
om

Adjacency List

● Assign each node a number from 0 to |V|-1
● An array of length |V| in which each entry stores a list of all adjacent vertices

(e.g., linked list)

D
CB

A

/

A

B

C

D

B /

A /

D B /

Adjacency List

● D = “out-degree of a vertex”

● Running time in terms of |V|, |E|, D to:
- Get a vertex’s out-edges:

- Get a vertex’s in-edges:

- Decide if some edge exists:

- Insert an edge:

- Delete an edge:

● Space requirements:

● Best for sparse or dense graphs?

D
CB

A

/

A

B

C

D

B /

A /

D B /

Which is better?

● It depends
● But in reality...

● ...a lot of problems have sparse graphs...
○ Streets form grids
○ Airlines rarely fly to all possible cities

● ...so you’ll see lots of adjacency lists

