CSE 332
Data Structures & Parallelism

Beyond Comparison Sorting

Melissa Winstanley
Spring 2024

Sorting: The Big Picture

Simple
algorithms:
O(n?)

Insertion sort
Selection sort

Fancier
algorithms:
O(n log n)

Heap sort
Merge sort
QUiCk SOI”[(avg)

Comparison

lower bound:

Q(n log n)

Specialized Handling
algorithms: huge data
O(n) sets

Bucket sort External
Radix sort sorting

A different view of sorting

e Assume we have n elements to sort
o And for simplicity, none are equal (no duplicates)

e How many permutations (possible orderings) of the elements? (\\.

e Example, n=3

A different view of sorting

e Assume we have(melements to sort
o And for simplicity, none are equal (no duplicates)

e How many permutations (possible orderings) of the elements?

e Example, n=3, six possibilities

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]
a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a]0]

e In general, n choices for least element, then n-1 for next, then n-2 for next, ...
o n(n-1)(n-2)...(2)(1) 9 n!jpossible orderings

Counting Comparisons

e Don’t know what the algorithm is, but it cannot make progress without doing
comparisons
o Eventually does a first comparison @
o Can use the result to decide what second comparison to do
o Etc.: comparison k can be chosen based on first k-1 results
e Can represent this process as @_ecision treE
Nodes contain “set of remaining possibilities”
At root, anything is possible; no option eliminated
Edges are “answers from a comparison”
The algorithm does not actually build the tree; it's what our proof uses to
represent “the most the algorithm could know so far” as the algorithm
progresses

O O O O

One Decision Tree forn = 3 \
a<b<c,b<e<a, 36

a<c<b,c<a<b,
b<a<¢,c<b<a

T, b

a<b<c¢ a<b 2 b<a<c
a<c<b b<c<a
=<a<b c<b<a

a<‘Z\?>c b</\l()>¢
a<b<c b<a<c
b<c<a

L

Q:EV/ b>c (j\. il
(;iikj;7 a<c<b

* The leaves contain all the possible orderings of a, b, c
* A different algorithm would lead to a different tree

Lower bound on Height

e A Dbinary tree of height h has at most how many leaves?
W
L/
o@ binary tree with L leaves has height at least:
hz_ o Oy L

\
o Cl'he decision tree has how many leaves: '\ s

e S0 the decision tree has height:

h = \OD\')Y\\'
ks

Lower bound on height

The height of a binary tree with L leaves is at least log2 L
So the height of our decision tree, h:

log,(n!) property of binary trees
=log,(n*(n-1)*(n-2)...(2)(1)) definition of factorial
=log,n +log,(n-1) + ... +log,(1) property of logarithms

2 log,n + log,(n-1) + ... +log,(n/2) keep first n/2 terms
— —_— —_—
2 (n/2) log,(n/2) each of the n/2 terms left is 2 log,(n/2)

cm—

= (n/2)(log, n - log, 2) property of logarithms

= (1/2) n log,r —@ arithmetic

Sorting: The Big Picture

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algoritiims: huge data
O(n?) O(n log n) Q(n log n) W sets

Insertion sort Heap sort
Selection sort Merge sort
Quick sort (avg)

Bucket sort External
Radix sort sorting

How???

 —
Change the model - assume
more than “compare(a,b)”

|

BucketSort (a.k.a. BinSort)

e If all values to be sorted are known to be integers between (and K\for any

ST nge),

o Create an array of size K, and put each element in its proper bucket (a.ka. bin)
o Ifdatais only integers, no need to store more than a count of how many times that
bucket has been used

e Qutput result via linear pass through array of buckets

(count array e Example:

1) ——"7@

l Input: (5,1,3432,1,1,545
T Outrytr (\ WL 2 \‘\\'\753\

N .% Step1: Y\

- [1] tep 2: h"\’\g

i lWwIdN

Bucket Sort with Data

e Most real lists aren'’t just #'s; we have data
e Each bucket is a list (say, linked list)
e To add to a bucket, place at end O(1) (keep pointer to last element)

count array e Example: Movie ratings:
1 —=Rocky V 1=bad,... 5=excellent
2 e |nput=
3 —Harry Potte
4 8. Harry Potler movie:
5 —%gasablancé—w 1: Rocky V

6 Star Wars)

Analyzing bucket sort

Performance depends on:

e Inputsize: n
e Number of buckets: K

e \Work to put the data in buckets: (.\
e Work to pull data out of the buckets: {1\ T \L

e Overall: C/\Ik\(\ -\-'\4\/

Radix sort 0\
I%N

e Radix = “the base of a number system”
o Examples will use 10 because we are used to that
o In implementations use larger numbers
m For example, for ASCII strings, might use 128
e |dea:
o Bucket sort on one digit at a time
m Number of buckets = radix_
m Starting with least significant digit, sort with Bucket Sort
m Keeping sort stable
o Do one pass per digit
e Invariant: After k passes, the last k digits are sorted

Aside: Origins go back to the 1890 U.S. census

Example 1 3 r1819
3 537 | 478

Radix = 10 r21 143 67 | 38| °
A (I N

Order now: 721

First pass: 3

1. bucket sort by ones digit 143

2. lterate thru and collect into a list 537

e Listis sorted by first digit 67

478

38

9

Example

Radix =10

9
Order was: 7@] \/Y
3

188
537
67
478
38
9

0]l 1] 2] 3] a 6 | 7| 8 | 9
3 537 | 478
21 143 67 | 38| °
0]l 1] 2] 3] a 6 | 7| 8 | 9
3 721 | 237 | 143 67 | 478
38
fr
\

Second pass:
stable bucket sort by tens digit

If we chop off the 100’s place,

-

these #s are sorted!

S

9
21
37
38
43
6/
78

537

Example 3 721 143 67 | 478
9 38
Radix = 10 —
o [1[2]3[a[s[e[7 s8]0
3
o | 143 478 | 537 721
38 -
3 67 /T R — 3 |

Order was: -
T@? :
| | - 38
537 T1hird pass: \—/x 67

38 stable bucket sort by tens digit 143
143 478
67 We're done! 537

478 721

Analysis of Radix Sort

Performance depends on:

o Input size: n
e Number of buckets fadlx B
o e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62

e Number of passes = @gits”: P‘)
o e.g. Ages of people: 3; Phone #: 10; Person’s name: ?
— -
e Work per pass is 1 bucket sort: A\ +\5

o Each pass is a Bucket Sort

o Total workis _¥(n+8)
o We do ‘P’ passes, each of which is a Bucket Sort

Recap: Features of Sorting Algorithms

In-place

PR,

e Sorted items occupy the same space as the original items.
(No copying required, only O(1) extra space if any.)

Stable

e Items in input with the same value end up in the same order as when they
began.

Examples:

e | Merge Sort notin place stable
e | Quick Sort in place not stable

Sorting massive data: External Sorting

Need sorting algorithms that minimize disk access time:

e Quicksort and Heapsort both jump all over the array, leading to expensive
random disk accesses

e Mergesort scans linearly through arrays, leading to (relatively) efficient
sequential disk access

Basic Idea:

e Load chunk of data into Memory, sort, store this “run” on disk/tape
Use the Merge routine from Mergesort to merge runs
e Repeat until you have only one run (one sorted chunk)

e Mergesort can leverage multiple disks
e \Neiss gives some examples

Sorting Summary

e Simple O(n?) sorts can be fastest for small n

o selection sort, insertion sort (latter linear for mostly-sorted)

o good for “below a cut-off” to help divide-and-conquer sorts
e O(nlog n) sorts

o heap sort, in-place but not stable nor parallelizable

o merge sort, not in place but stable and works as external sort

o quick sort, in place but not stable and O(n?) in worst-case

m often fastest, but depends on costs of comparisons/copies
Q(n log n) is worst-case and average lower-bound for sorting by comparisons

e Non-comparison sorts

o Bucket sort good for small number of key values

o Radix sort uses fewer buckets and more phases
e Best way to sort? It depends!

