
CSE 332
Data Structures & Parallelism

Beyond Comparison Sorting

Melissa Winstanley
Spring 2024

Sorting: The Big Picture

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
𝛀(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
...

Heap sort
Merge sort
Quick sort (avg)

...

Bucket sort
Radix sort

External
 sorting

A different view of sorting

● Assume we have n elements to sort
○ And for simplicity, none are equal (no duplicates)

● How many permutations (possible orderings) of the elements?

● Example, n=3

A different view of sorting

● Assume we have n elements to sort
○ And for simplicity, none are equal (no duplicates)

● How many permutations (possible orderings) of the elements?

● Example, n=3, six possibilities

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]
a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

● In general, n choices for least element, then n-1 for next, then n-2 for next, …
○ n(n-1)(n-2)…(2)(1) = n! possible orderings

Counting Comparisons

● Don’t know what the algorithm is, but it cannot make progress without doing
comparisons
○ Eventually does a first comparison “is a < b ?"
○ Can use the result to decide what second comparison to do
○ Etc.: comparison k can be chosen based on first k-1 results

● Can represent this process as a decision tree
○ Nodes contain “set of remaining possibilities”
○ At root, anything is possible; no option eliminated
○ Edges are “answers from a comparison”
○ The algorithm does not actually build the tree; it’s what our proof uses to

represent “the most the algorithm could know so far” as the algorithm
progresses

One Decision Tree for n = 3

Lower bound on Height

● A binary tree of height h has at most how many leaves?

L ≤ ______________

● A binary tree with L leaves has height at least:

h ≥ ______________

● The decision tree has how many leaves: _______

● So the decision tree has height:

h ≥ ______________

Lower bound on height

● The height of a binary tree with L leaves is at least log2 L
● So the height of our decision tree, h:

 h ≥ log2(n!) property of binary trees

= log2(n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2n + log2(n-1) + … + log2(1) property of logarithms

≥ log2n + log2(n-1) + … + log2(n/2) keep first n/2 terms

≥ (n/2) log2(n/2) each of the n/2 terms left is ≥ log2(n/2)

= (n/2)(log2 n - log2 2) property of logarithms

= (1/2) n log2n – (1/2)n arithmetic

“=” 𝛀 (n log n)

Sorting: The Big Picture

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
𝛀(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
...

Heap sort
Merge sort
Quick sort (avg)

...

Bucket sort
Radix sort

External
 sorting

How???

Change the model - assume
more than “compare(a,b)”

BucketSort (a.k.a. BinSort)

● If all values to be sorted are known to be integers between 1 and K (or any
small range),
○ Create an array of size K, and put each element in its proper bucket (a.ka. bin)
○ If data is only integers, no need to store more than a count of how many times that

bucket has been used
● Output result via linear pass through array of buckets

● Example:
K=5
Input: (5,1,3,4,3,2,1,1,5,4,5)
Output:

● Runtime: Step 1: _______________

Step 2: _______________

count array
1
2
3
4
5

Bucket Sort with Data

● Most real lists aren’t just #’s; we have data
● Each bucket is a list (say, linked list)
● To add to a bucket, place at end O(1) (keep pointer to last element)

● Example: Movie ratings:
1=bad,… 5=excellent

● Input=
5: Casablanca

 3: Harry Potter movies
1: Rocky V
5: Star Wars

count array
1
2
3
4
5

Rocky V

Harry Potter

Casablanca Star Wars

Analyzing bucket sort

Performance depends on:

● Input size: n
● Number of buckets: K

● Work to put the data in buckets: ___________

● Work to pull data out of the buckets: _____________

● Overall: _________________

Radix sort

● Radix = “the base of a number system”
○ Examples will use 10 because we are used to that
○ In implementations use larger numbers

■ For example, for ASCII strings, might use 128
● Idea:

○ Bucket sort on one digit at a time
■ Number of buckets = radix
■ Starting with least significant digit, sort with Bucket Sort
■ Keeping sort stable

○ Do one pass per digit
● Invariant: After k passes, the last k digits are sorted

Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

Input: 478
537
 9
721
 3
 38
143
 67

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list
● List is sorted by first digit

Order now: 721
 3
143
537
 67
478
 38
 9

0 1 98765432

721 9478
 38

537
 67

 3
143

Example

Radix = 10

Order was: 721
 3
143
537
 67
478
 38
 9

Second pass:
stable bucket sort by tens digit

If we chop off the 100’s place,
these #s are sorted!

Order now: 3
 9
721
537
 38
143
 67
478

0 1 98765432

3
9 47867143537

 38721

0 1 98765432

721 9478
 38

537
 67

 3
143

Example

Radix = 10

Order was: 3
 9
721
537
 38
143
 67
478

Third pass:
stable bucket sort by tens digit

We’re done!

Order now: 3
 9
 38
 67
143
478
537
721

0 1 98765432

3
9 47867143537

 38721

0 1 98765432
 3
 9
38
67

143 721537478

Analysis of Radix Sort

Performance depends on:

● Input size: n
● Number of buckets = Radix: B

○ e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
● Number of passes = “Digits”: P

○ e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

● Work per pass is 1 bucket sort: ___________
○ Each pass is a Bucket Sort

● Total work is _____________
○ We do ‘P’ passes, each of which is a Bucket Sort

Recap: Features of Sorting Algorithms

In-place

● Sorted items occupy the same space as the original items.
(No copying required, only O(1) extra space if any.)

Stable

● Items in input with the same value end up in the same order as when they
began.

Examples:

● Merge Sort not in place stable
● Quick Sort in place not stable

Sorting massive data: External Sorting

Need sorting algorithms that minimize disk access time:

● Quicksort and Heapsort both jump all over the array, leading to expensive
random disk accesses

● Mergesort scans linearly through arrays, leading to (relatively) efficient
sequential disk access

Basic Idea:

● Load chunk of data into Memory, sort, store this “run” on disk/tape
● Use the Merge routine from Mergesort to merge runs
● Repeat until you have only one run (one sorted chunk)

● Mergesort can leverage multiple disks
● Weiss gives some examples

Sorting Summary

● Simple O(n2) sorts can be fastest for small n
○ selection sort, insertion sort (latter linear for mostly-sorted)
○ good for “below a cut-off” to help divide-and-conquer sorts

● O(n log n) sorts
○ heap sort, in-place but not stable nor parallelizable
○ merge sort, not in place but stable and works as external sort
○ quick sort, in place but not stable and O(n2) in worst-case

■ often fastest, but depends on costs of comparisons/copies
● 𝛀(n log n) is worst-case and average lower-bound for sorting by comparisons
● Non-comparison sorts

○ Bucket sort good for small number of key values
○ Radix sort uses fewer buckets and more phases

● Best way to sort? It depends!

