CSE 332 Data Structures & Parallelism

Comparison Sorting

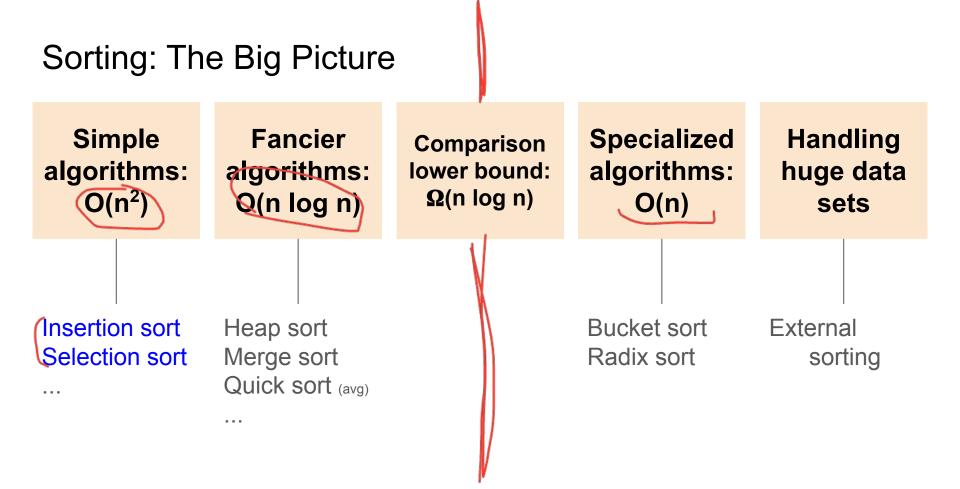
Melissa Winstanley Spring 2024

Introduction to sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want "all the data items" in some order
 - Anyone can sort, but a computer can sort faster
 - Very common to need data sorted somehow
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
 - · · · ·
- Different algorithms have different asymptotic and constant-factor trade-offs
 - No single 'best' sort for all scenarios
 - Knowing one way to sort just isn't enough

Variations on the basic problem

- 1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn't do so)
- 2. Maybe in the case of ties we should preserve the original ordering
 - Sorts that do this naturally are called stable sorts
 - One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically
- 3. Maybe we must not use more than O(1) "auxiliary space"
 - Sorts meeting this requirement are called (in-place' sorts
 - Not allowed to allocate extra array (at least not with size O(n)), but can allocate O(1) # of variables
 - All work done by swapping around in the array
- 4. Maybe we can do more with elements than just compare
 - Comparison sorts assume we work using a binary 'compare' operator
 - In special cases we can sometimes get faster algorithms
- 5. Maybe we have too much data to fit in memory
 - Use an "external sorting" algorithm



Insertion Sort

- Idea: At step k, put the kth element in the correct position among the first k elements
- Alternate way of saying this:
 - Sort first two elements
 - Now insert 3rd element in order
 - Now insert 4th element in order
 ...
- "Loop invariant": when loop index is **i**, first **i** elements are sorted relative to each other
- Time?

Best-case
$$O(n)$$
 Worst-case $O(n^1)$ "Average" case $O(n^2)$

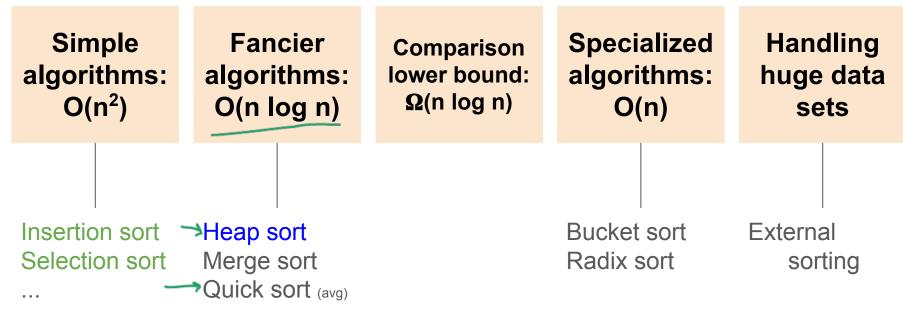
Selection sort

- Idea: At step k, find the smallest element among the not-yet-
- sorted elements and put it at position k
- Alternate way of saying this:
 Find smallest element, put it 1st
 Find next smallest element, put it 2nd
 Find next smallest element, put it 3rd
- "Loop invariant": when loop index is **i**, first **i** elements are the **i** smallest elements in sorted order
- Time? Best-case $\underline{O(n^2)}$ Worst-case $\underline{O(n^2)}$ Average" case $\underline{O(n^2)}$

Insertion Sort vs. Selection Sort

- Different algorithms
- Solve the same problem
- Have the same worst-case and average-case asymptotic complexity
 Insertion-sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for non-small arrays that are not already almost sorted
 - Insertion sort may do well on small arrays

Sorting: The Big Picture



. . .

Heap sort

- Sorting with a heap is easy!
 - insert each arr[i], better yet use buildHeap O(n)

o_for(i=0; i < arr.length; i++) \(\cappa)\)</pre>

arr[i] = deleteMin(); ____

• Worst-case running time:

• We have the array-to-sort and the heap

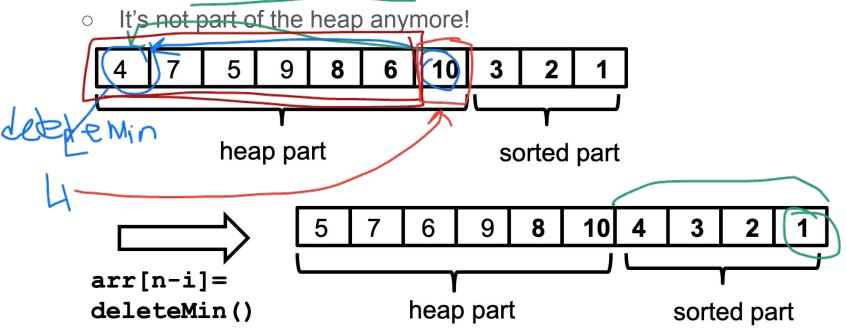
O(nlogn)

- So this is **not** an in-place sort
- There's a trick to make it in-place...

In-place heap sort

But this reverse sorts - how would you fix that?

- Treat the initial array as a heap (via buildHeap)
- When you delete the ith element, put it at arr[n-i]



Sorting: The Big Picture					
Simple algorithms: O(n ²)	Fancier algorithms: O(n log n)	Comparison lower bound: Ω(n log n)		Specialized algorithms: O(n)	Handling huge data sets
Insertion sort Selection sort	Heap sort Merge sort Quick sort (avg)	3		Bucket sort Radix sort	External sorting

Divide and conquer

Very important technique in algorithm design

- 1. Divide problem into smaller parts
- 2. Solve the parts independently
 - Think recursion
 - Or potential parallelism
- 3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half, split into halves...

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. **Quicksort**: Pick a "pivot" element

Divide elements into those less-than pivot and those greater-than pivot

Sort the two divisions (recursively on each) Answer is [*sorted-less-than* then *pivot* then

Sorted-greater-than]

2. Mergesort: Sort the left half of the elements (recursively) Sort the right half of the elements (recursively) Merge the two sorted halves into a sorted whole

Quicksort

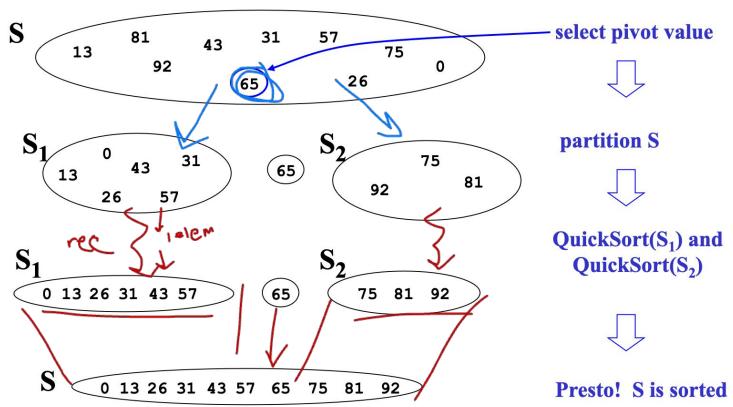
- Uses divide-and-conquer
 - Recursively chop into halves pieces
 - But, instead of doing all the work as we merge together, we'll do all the work as we recursively split into halves
 - Also unlike MergeSort, does not need auxiliary space
- O(n log n) on average 😁, but O(n²) worst-case 😢
 - MergeSort is always O(nlogn)
 - So why use QuickSort?
- Can be faster than mergesort
 - Often believed to be faster
 - Quicksort does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

- 1. Pick a pivot element
 - Hopefully an element ~median
 - Good QuickSort performance depends on good choice of pivot; we'll see why later, and talk about good pivot selection later
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot_
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

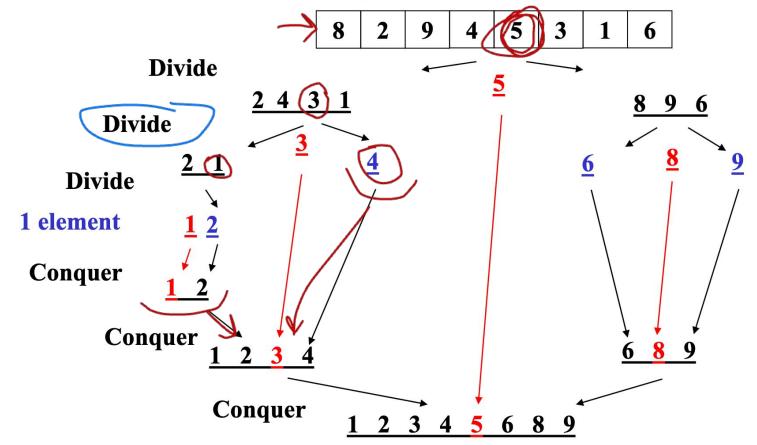
(Alas, there are some details lurking in this algorithm)

Quicksort: Think in terms of sets



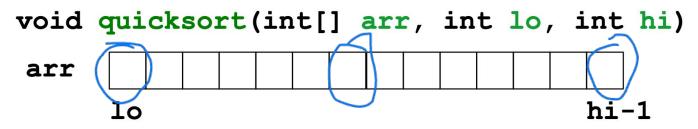
[Weiss]

Quicksort Example, showing recursion



Quicksort: Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)...



- Pick arr[lo] Of arr[hi-1]
 - Fast, but worst-case is (mostly) sorted input
- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - (Still probably the most elegant approach)
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common heuristic that tends to work wel⁻

Partitioning

One approach (there are slightly fancier ones):

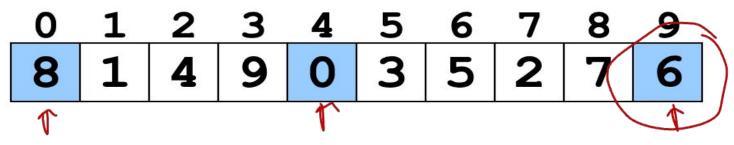
- 1. Swap pivot with arr[lo]; move it 'out of the way'
- 2. Use two fingers i and j, starting at lo+1 and hi-1 (start & end of range, apart from pivot)
- 3. Move from right until we hit something less than the pivot; belongs on left side Move from left until we hit something greater than the pivot; belongs on right side Swap these two; keep moving inward

```
while (i < j)
  if (arr[j] > pivot) j--
  else if (arr[i] <= pivot) i++
  else swap arr[i] with arr[j]</pre>
```

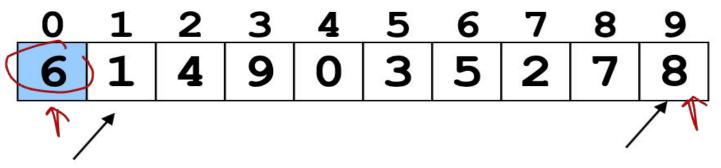
4. Put pivot back in middle (Swap with **arr[i]**)

Quicksort Example

- 1. Pick pivot as median of 3
 - lo = 0, hi = 10



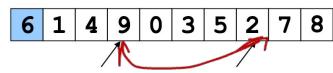
2. Step two: move pivot to the lo position

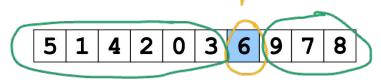


Often have more than one swap during partition – this is a short example

Quicksort Example

Now partition in place



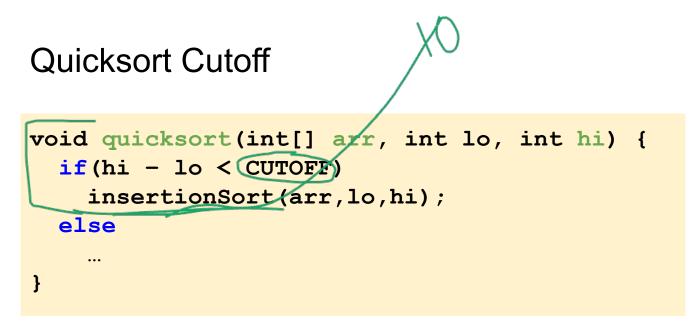


Move fingers

Swap

Move fingers

Move pivot



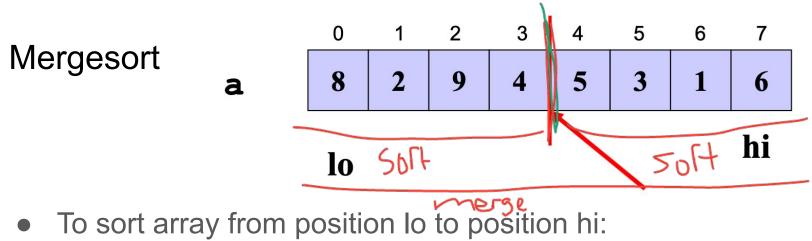
Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Works for other recursive or parallel algorithms too!

Sorting: The Big Picture

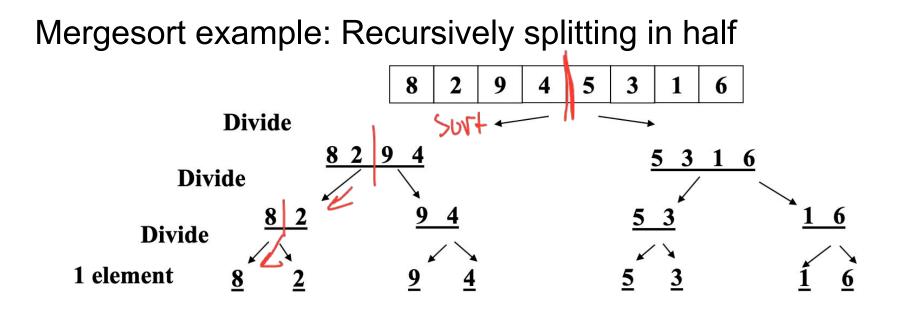
Simple algorithms: O(n ²)	Fancier algorithms: O(n log n)	Comparison lower bound: Ω(n log n)	Specialized algorithms: O(n)	Handling huge data sets
Insertion sort	Heap sort		Bucket sort	External
Selection sort	Merge sort		Radix sort	sorting
	>Quick sort (avg)			_



- - If range is 1 element long, it's sorted! (Base case) Ο
 - Else, split into two halves: Ο
 - Sort from lo to (hi+lo)/2
 - Sort from (hi+lo)/2 to hi
 - Merge the two halves together
- Merging takes two sorted parts and sorts everything
 - O(n) but requires auxiliary space... Ο

Example, focus on merging Start with: 8 2 9 4 3 6 5 a Sort Sort After we return from left and right recursive calls (pretend 8 9 3 4 5 6 a it works for now) 1ę Merge: Use 3 "fingers" and 1 more aux array

(After merge, copy back to original array)



Don't forget we need an Mergesort example: Merge as we return auxiliary array at each step 5 3 8 9 2 6 Divide 829 4 5 3 1 6 Divide 5 3 6 8 2 Divide 1 element 9 5 6 Merge aux 3 5 6 Merge 4 18/0 avx 3 5 6 Merge DUX 8

Improving constant factors

- Don't create a new auxiliary array at each recursive call
 - Reuse the same auxiliary array of size n for every merging stage
 - Allocate auxiliary array at beginning, use throughout
- Best (but a little tricky):
 - Don't copy back at 2nd, 4th, 6th, ... merging stages, use the original array as the auxiliary array and vice-versa
 - Need one copy at end if number of stages is odd
- Unnecessary to copy 'dregs' over to auxiliary array
 - If left-side finishes first, just stop the merge & copy the auxiliary array
 - If right-side finishes first, copy dregs directly into right side, then copy auxiliary array

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort n elements, we:

Return immediately if n=1
Else do 2 subproblems of size ______ and then a merge of work ______

Recurrence relation?

$$T(n) = 2T(n/2) + n$$

Mergesort Recurrence

(For simplicity let constants be 1 – no effect on asymptotic answer)

T(1) = 1T(n) = 2T(n/2) + n

> = 2(2T(n/4) + n/2) + n= 4T(n/4) + 2n = 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n (after k expansions)

.... (after k expansions) = $2^{k}T(n/2^{k}) + kn$ So total is $2^{k}T(n/2^{k}) + kn$ where $n/2^{k} = 1$, i.e., log n = k

Quicksort Recurrence

Best-case? D(nbgn) T(n) = 2T(1/2) + n $O(N_z)$ Worst-case? T(n) = T(n-1) + nU(n log n) in place Average-case?