
CSE 332
Data Structures & Parallelism

Hashing 2

Melissa Winstanley
Spring 2024

Today

Last time:

● Hash tables
● Hash functions
● Separate chaining

Today:

● Open Addressing
○ Linear probing
○ Quadratic probing
○ Double hashing

● Rehashing

Hash Tables: Review

● Dictionary implementation
● Aim for constant-time (i.e., O(1)) find, insert, and delete

○ “On average” under some reasonable assumptions
● A hash table is an array of some fixed size

○ But growable as we’ll see

Client

E int

Hash table library

index
hash(key) mod by

table size

Collision
resolutioncollision?

...

0

1

2

3

tableSize - 1

Hashing Choices

1. Choose a Hash function
- Fast
- Even spread

2. Choose TableSize
- Prime Numbers

3. Choose a Collision Resolution Strategy from these:
- Separate Chaining
- Open Addressing

- Linear Probing
- Quadratic Probing
- Double Hashing

● Other issues to consider:
○ What to do when the hash table gets “too full”?

Open Addressing: Linear Probing (simplest)

● Why not use up the empty space in the table?
● Store directly in the array cell (no linked list)
● How to deal with collisions?
● If h(key) is already full,

○ try (h(key) + 1) % TableSize. If full,
○ try (h(key) + 2) % TableSize. If full,
○ try (h(key) + 3) % TableSize. If full…

● Example: insert 38, 19, 8, 109, 10

0

1

2

3

4

5

6

7

8

9

Open addressing

Linear probing is one example of open addressing

● Resolving collisions by trying a sequence of other positions in the table.

Trying the next spot is called probing

● We just did linear probing:
○ ith probe: (h(key) + i) % TableSize

● In general have some probe function f:
○ ith probe: (h(key) + f(i,key)) % TableSize

Open addressing does poorly with high load factor λ

● So want larger tables
● Too many probes means no more O(1)

Questions: Open Addressing: Linear Probing

How should find work? If key is in table? If not there?

Worst case scenario for find?

How should we implement delete?

How does open addressing with linear probing compare
to separate chaining?

8

109

10

19

38

0

1

2

3

4

5

6

7

8

9

Primary Clustering

It turns out linear probing is a bad idea, even though the probe function is
quick to compute (a good thing)

● Tends to produce clusters, which
lead to long probe sequences

● Called primary clustering

● Saw the start of a cluster in our
linear probing example

Analysis in chart form

● Linear-probing performance degrades rapidly as table gets full
○ (Formula assumes “large table” but point remains)

● By comparison, separate chaining performance is linear in λ and has
no trouble with λ>1

Open Addressing: Linear probing

indexi = (h(key) + f(i, key)) % TableSize

● For linear probing:

f(i, key) = i

● So probe sequence is:
○ 0th probe: h(key) % TableSize
○ 1st probe: (h(key) + 1) % TableSize
○ 2nd probe: (h(key) + 2) % TableSize
○ 3rd probe: (h(key) + 3) % TableSize
○ …
○ ith probe: (h(key) + i) % TableSize

Open Addressing: Quadratic probing

● We can avoid primary clustering by changing the probe function…

indexi = (h(key) + f(i, key)) % TableSize

● For quadratic probing:

f(i, key) = i2

● So probe sequence is:
○ 0th probe: h(key) % TableSize
○ 1st probe: (h(key) + 1) % TableSize
○ 2nd probe: (h(key) + 4) % TableSize
○ 3rd probe: (h(key) + 9) % TableSize
○ …
○ ith probe: (h(key) + i2) % TableSize

● Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example

TableSize=10

Insert:
89
18
49
58
79

0

1

2

3

4

5

6

7

8

9

ith probe:(h(key) + i2) % TableSize

Another Quadratic Probing Example

TableSize=7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

ith probe:(h(key) + i2) % TableSize

0

1

2

3

4

5

6

Another Quadratic Probing Example

Insert 47

(47 + 1) % 7 = 6 collision!
(47 + 4) % 7 = 2 collision!
(47 + 9) % 7 = 0 collision!
(47 + 16) % 7 = 0 collision!
(47 + 25) % 7 = 2 collision!
(47 + 36) % 7 = 6 collision!
(47 + 49) % 7 = 5 collision!

Will we ever get a 1 or a 4?!?!

ith probe:(h(key) + i2) % TableSize

48

5

55

76

0

1

2

3

40

4

5

6

From bad news to good news

Bad News:

● After TableSize quadratic probes, we cycle through the same indices

Good News:

● If TableSize is prime and λ < ½, then quadratic probing will find an empty
slot in at most TableSize/2 probes

● So: If you keep λ < ½ and TableSize is prime, no need to detect cycles
● Proof posted in lecture12.txt (slightly less detailed proof in textbook)

For prime TableSize and 0 ≤ i,j ≤ TableSize/2 where i ≠ j,
(h(key) + i2) % TableSize ≠ (h(key) + j2) % TableSize

That is, if TableSize is prime, the first TableSize/2 quadratic probes map to
different locations (and one of those will be empty if the table is < half full).

Primary clustering reconsidered

● Quadratic probing does not suffer from primary clustering: As we resolve
collisions we are not merely growing “big blobs” by adding one more item to
the end of a cluster, we are looking i2 locations away, for the next possible
spot

● But quadratic probing does not help resolve collisions between keys that
initially hash to the same index

○ Any 2 keys that initially hash to the same index will have the same
series of moves after that looking for any empty spot

○ Called secondary clustering

● Can avoid secondary clustering with a probe function that depends on the
key: double hashing…

Open Addressing: Double hashing

Idea: Given two good hash functions h and g, and two different keys k1 and k2, it is very unlikely
that: h(k1)==h(k2) and g(k1)==g(k2)

indexi = (h(key) + f(i, key)) % TableSize

● For double hashing:

f(i, key) = i*g(key)

● So probe sequence is:
○ 0th probe: h(key) % TableSize
○ 1st probe: (h(key) + g(key)) % TableSize
○ 2nd probe: (h(key) + 2*g(key)) % TableSize
○ 3rd probe: (h(key) + 3*g(key)) % TableSize
○ …
○ ith probe: (h(key) + i*g(key)) % TableSize

● Detail: Make sure g(key) can’t be 0

Double Hashing Example

TableSize T=10

h(key) = key
g(key) = 1 + (key/T) % (T-1)

Insert:
13
28
33
147
43

0

1

2

3

4

5

6

7

8

9

ith probe:(h(key) + i*g(key)) % TableSize

--> g(147) = 1 + 14%9 = 6

--> g(43) = 1 + 4%9 = 5
Oh
no!

Where are we?

● Separate Chaining is easy
○ find, insert, delete proportional to load factor on average if using unsorted

linked list nodes
○ If using another data structure for buckets (e.g. AVL tree), runtime is proportional

to runtime for that structure.
● Open addressing uses probing, has clustering issues as table fills. Why use it:

○ Less memory allocation?
■ Some run-time overhead for allocating linked list (or whatever) nodes; open

addressing could be faster
○ Easier data representation?

● Now:
○ Growing the table when it gets too full (aka “rehashing”)
○ Relation between hashing/comparing and connection to Java

Rehashing (resizing)

● As with array-based stacks/queues/lists, if table gets too full, create a bigger
table and copy everything over

● With separate chaining, we get to decide what “too full” means
○ Keep load factor reasonable (e.g., < 1)?
○ Consider average or max size of non-empty chains?

● For open addressing, half-full is a good rule of thumb
● New table size

○ Twice-as-big is a good idea, except, uhm, that won’t be prime!
○ So go about twice-as-big
○ Can have a list of prime numbers in your code since you probably won’t grow

more than 20-30 times, and then calculate after that
● How do we actually do the resizing? We can’t copy elements into same index!

A Generally Good hashCode()

int result = 17; // start at a prime
foreach field f
 int fieldHashcode =
 boolean: (f ? 1: 0)
 byte, char, short, int: (int) f
 long: (int) (f ^ (f >>> 32))
 float: Float.floatToIntBits(f)
 double: Double.doubleToLongBits(f), then above
 Object: object.hashCode()
 result = 31 * result + fieldHashcode;
return result;

Even better? Use
randomization

(chosen on startup)

Final word on hashing

● The hash table is one of the most important data structures
○ Efficient find, insert, and delete
○ Operations based on sorted order are not so efficient!
○ Useful in many, many real-world applications
○ Popular topic for job interview questions

● Important to use a good hash function
○ Good distribution, Uses enough of key’s components
○ Not overly expensive to calculate (bit shifts good!)

● Important to keep hash table at a good size
○ Prime #
○ Preferable λ depends on type of table

