CSE 332
Data Structures & Parallelism
Hashing 2

Melissa Winstanley
Spring 2024



Today

Last time:

e Hash tables
e Hash functions
e _Separate chaining

Today:

o Bpen Addressing

o Linear probing
o Quadratic probing
o Double hashing

o Rehashing/ resizy (\_(j




Hash Tables: Review

e Dictionary implementation
e Aim for constant-time (i.e.{O£1 )J find, insert, and delete

o “On average” under some reasonable assumptions
e Ahash table is an array of some fixed size
o But growable as we’'ll see

E ——»
ash(keb\

Client

int

3 75 \0

> index
mod by

table size

—p Collision
collision? resolution

Hash table library

\CON*Q

tableSize - 1




Hashing Choices

1. Choose a Ijash@io_n___

- Fast
—> Even spread
2. Choose leSize
- Prime Numbers
3. Choose a Collision Resolution Strategy from these:
- Separate Chaining

- Open Addressing
- Linear Probing
- Quadratic Probing
- Double Hashing
e Other issues to consider:
o What to do when the hash table gets “too full”? N % hWos\A

————




Open Addressing: Linear Probing (simp

Why not use up the empty space in the table?
Store directly in the array cell (no linked list)
How to deal with collisions?

If h (key) is already full,

o try (h(key) @A $ TableSize. If full,

o try (h(key) TableSize. If full,
o try (h(key) % TableSize. If full...

o°

Example: insert 38, 19, _8‘ 109, 1

R

T—::\O

2

© 0O N O O A W N = O

\ Y

\O

5%

=

%‘L \Oq\ \0o
\Oql \O\
\0,

B 109,



Open addressing

Linear probing is one example of open addressing
e Resolving collisions by trying a sequence of other positions in the table.
Trying the next spot is called probing

e \We just did linear probing:
o [i"probe: (h(key) + i) % TableSize

e In general have some probe function £:
o i probe: (h (key) +§f(i,key)\) % TableSize

Open addressing does poorly with high load factor A

e So want larger tables =D
e Too many probes means no more O(1) >\ C‘)



Questions: Open Addressing: Linear Probing

S

How should £ind work? If key is in table? If not there? (:
ErAligy L
Worst case scenario for £ind? l>
(MY BY
How should we implement delete?

Tomb SYQV\Q/\OJ/\\ \O O

How does open addressing with linear probing compare
to separate chaining?

© 0O N O O A W N =

tYD8-

10

38

19




Primary Clustering

It turns out linear probing is a bad idea, even though the probe function is
quick to compute (a good thing)

I
U
. .l L!jLﬂLJLJL!i'L!JLJL_lLJ .
e T[ends to produce clusters, which e .uummuuumummmuwuuu
lead to lon b L eee oL oo eneit
g probe sequences £ wyonmmn L1 N
ol liBiimoN® ‘V el lee
' ' - .muummuuuﬁumuuuu
e C(Called primary clustering e neyieelt® o Oy
eyl LI *
: .ummmwmuuu oo, t@IeI I
e Saw the start of a cluster in our LA . ummmmm&ummumw )
: : st AR SUMILLS
linear probing example - L_jmmummmm "
it uummmméﬁggﬁwmuwu
lilie

O

[R. Sedgewick]




Analysis in chart form

e Linear-probing performance degrades rapidly as table gets full
o (Formula assumes “large table” but point remains)
e By comparison, separate chaining performance is linear in A and has
no trouble with A>1

Linear Probing Linear Probing

" 16.00 3 350.00
8 1400 £ 300.00
g 1200 2 25000
8 1000 -
“6 ' "‘6 200.00
£=3 b | ——linear probing *  150.00 linear probing
o 6.00 not found Q not found
W 400 80 100.00
g ' = |inear probing g 50.00 / = |inear probing
> 2.00 found > ' ﬁ ’ found
< 0.00 <  0.00 — a4

= O OO 0™~ O W T M N

QH A NMT 1N Y™ QA

O OO0 O 0O oo o oo

Load Factor




Open Addressing: Linear probing

index, = (h(key) + £(i, key)) % TableSize

e For linear probing:

e So probe sequence is:

o [0 probe: h (key) % TableSize

o | 1% probe: (h(key) + 1) % TableSize
o| 2"9probe: (h(key) + 2) % TableSize
o| 39probe: (h(key) + 3) % TableSize
ol ...

o| i" probe: (h(key) + i) % TableSize

—




Open Addressing: Quadratic probing

e We can avoid primary clustering by changing the probe function...
index, = (h(key) + £(i, key)) % TableSize
e For quadratic probing:

£(1, key) =B

e So probe sequence is:

o O™ probe: h(key) $ TableSize N

o 1%probe:  (h(key) + (i) % Tablesize |

o 2" probe: (h(key) + @) % TableSize )*
o 3" probe: (h(key) + ©))% TableSize 3%
O

o i probe: (h(key) + i?) % TableSize

e Intuition: Probes quickly “leave the neighborhood”



i" probe: (h (key) + i%) % TableSize

Quadratic Probing Example

o ua |42 S (I WTableSize=10
1
5 Y Insert:
j —1° 19, ’%,
s p A
) 58
79
7 —
8 | 9 S%o
9| %9 13, 5%, 7124




Anot

SO O A W N 2 O

i

5

S5

40

76

i" probe: (h (key) + i2%) %

her Quadratic Probing Example

&

TableSize=7
Insert
(76 % 7 = 6)

}6 (40% 7=95)
48 (48 % 7 = 6)
>4 ( OS% T = 5)
o5 (55 % 7 = 6)
a7 (47 % 7 = 5)

TableSize



i" probe: (h (key) + i%) % TableSize

Another Quadratic Probing Example

48 Insert 47

(47+1)%7=6) collision!
(47 +4)% 7=2) collision!
(47 +9)% 7=0) collision!
(47 +16) % 7 =0 collision!
(47 +25) % 7 =2 collision!
(47 +36) % 7 =6 collision!
(47 +49) % 7 =B\ collision!

95

40

SO O A W N 2 O

76

Will we ever geta 1 or a 47!?!



From bad news to good news

Bad News:

e After TableSize quadratic probes, we cycle through the same indices

Good News:

e If TableSize is prime and A < ', then quadratic probing will find an empty
slot in at most TableSize/2 probes

e So:Ifyou keep A <2 and TableSize is prime, no need to detect cycles

e Proof posted in lecturel?2. txt (slightly less detailed proof in textbook)
For prime TableSizeand 0 £ i,j < TableSize/2 wherei # 7,
(h(key) + i2) % TableSize # (h(key) + j2) % TableSize

That is, if TableSize is prime, the first TableSize/2 quadratic probes map to
different locations (and one of those will be empty if the table is < half full).



Primary clustering reconsidered

e Quadratic probing does not suffer from primary clustering: As we resolve
collisions we are not merely growing “big blobs” by adding one more item to
the end of a cluster, we are looking i? locations away, for the next possible
spot

e But quadratic probing does not help resolve collisions between keys that
initially hash to the same index

o Any 2 keys that initially hash to the same index will have the same
series of moves after that looking for any empty spot

o Called secondary clustering

e Can avoid secondary clustering with a probe function that depends on the
key: double hashing...




Open Addressing: Double hashing

Idea: Given two good hash functions h and g, and two different keys k7 and k2, it is very unlikely
that: h (k1) ==h (k2) and g (k1) ==qg (k2)
u I R N _J

index, = (h(key) + £(i, key)) % TableSize
e For double hashing:

£(i, key) =(i¥g(key)

e So probe sequence is:
o O"probe: h(key) % TableSize

18t probe: (h(key) + $ TableSize
1 probe: (b (key) ”@, T _
probe: (h(key) + g(key)) % TableSize
+

3" probe: (h (key) 3*g(key)) % TableSize

O O O O O

i" probe: (h(key) + i*g(key)) % TableSize

o Detailg/lake sure g (key) can’t@
\




Double Hashing Example

g N W N =~ O

..

\3

53

47

i" probe: (h (key) + i*g(key)) % TableSize

cys —>9(key) =[TT(T<-:?/T) 5 (T- 1]

Insert:

o
%— \PQ °/°°D'-LJ\

147 ->9g(147) =1+ 14%9 = 6
43 -5|g@a3) = 1+4%9 @ no'




Where are we?

e Separate Chaining is easy
o find, insert, delete proportional to load factor on average if using unsorted
T o linked list nodes
o If using another data structure for buckets (e.g. AVL tree), runtime is proportional
to runtime for that structure.
e Open addressing uses probing, has clustering issues as table fills. Why use it:
o Less memory allocation?
? X\’\W‘ m Some run-time overhead for allocating linked list (or whatever) nodes; open
\j addressing could be faster
o FEasier data representation?
e Now:
o Growing the table when it gets too full (aka “rehashing”)
o Relation between hashing/comparing and connection to Java




Rehashing (resizing)

e As with array-based stacks/queues/lists, if table gets too full, CW
table and copy everything over
e \With separate chaining, we get to decide what “too full” means

o Keep load factor reasonable (
o Consider average or max size of non=empty chains? ‘\4\%‘ \'C X
e For open addressing, half-full is a good rule of thumb
a2
e New table size
o Twice-as-big is a good idea, except, uhm, that won’t be prime! _
o So go about twice-as-big o
o Can have aWrs in your code since you probably won'’t grow
more than 20-30 times, and then calculate after that
e How do we actually do the resizing? We can’t copy elements into same index!




A Generally Good hashCode ()

int result / start at a prime

foreach field £
int fieldHashcode =

boolean:

byte,
long:
float:
double:
bject:

char,
(int)
Float.floatToIntBits (f)

(£ 2 1: 0)
short, int:

(£ 7

(int) £
(f >>> 32))

Double.doubleToLongBits (f),
object.hashCode ( )

result = 61 * resulf\+ fieldHashcode;

return result;

Joshua Bloch ... #

Java 9

Effective Java

Third Edition

then above

Even better? Use
randomization
(chosen on startup)




Final word on hashing

e The hash table is one of the most important data structures
o Efficient find, insert, and delete
o QOperations based on sorted order are not so efficient!
o Useful in many, many real-world applications
o Popular topic for job interview questions

e Important to use a good hash function
o Good distribution, Uses enough of key’s components
o Not overly expensive to calculate (bit shifts good!)

e Important to keep hash table at a good size
o Prime#
o Preferable A depends on type of table



