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Question Time

One of the assumptions that Big-Oh makes is that all operations 
take the same amount of time.

Is that really true?



A Typical Memory Hierarchy

Disk: 1TB = 240

Main memory: 2GB = 231

L2 cache: 2MB = 221

L1 cache: 128KB = 217

CPU

“Every desktop/laptop/server is 
different” but here’s a plausible 

configuration

instructions (eg addition): 230/sec

get data in L1: 229/sec = 2 instructions

get data in L2: 225/sec = 30 instructions

get data in main memory:
    222/sec = 250 instructions

get data from “new place” on disk:
   27/sec = 8,000,000 instructions



“Fuggedaboutit”, usually

● The hardware automatically moves data into the caches from 
main memory for you
○ Replacing items already there
○ So algorithms much faster if “data fits in cache” (often does)

● Disk accesses are done by software (e.g., ask operating 
system to open a file or database to access some data)

● So most code “just runs” but sometimes it’s worth designing 
algorithms / data structures with knowledge of memory 
hierarchy
○ And when you do, you often need to know one more thing…



How does data move up the hierarchy?

● Moving data up the memory hierarchy is slow because of latency 
(think distance-to-travel)
○ Since we’re making the trip anyway, may as well carpool

■ Get a block of data in the same time it would take to get a byte
○ Sends nearby memory because:

■ It’s easy
■ And likely to be asked for soon

● Side note: Once a value is in cache, may as well keep it around for 
awhile; accessed once, a particular value is more likely to be 
accessed again in the near future (more likely than some random 
other value)

Spatial locality

Temporal locality



Locality

Temporal Locality (locality in time) – If an address is referenced, it will tend to be 
referenced again soon.

Eg a loop index, size field of a data structure

Spatial Locality (locality in space) – If an address is referenced, addresses that 
are close by will tend to be referenced soon.

Eg elements in an array



Arrays vs Linked lists

Which has the potential to best take advantage of spatial locality?



Block/line size

● The amount of data moved from disk into memory is called the 
“block” size or the “page” size
○ Not under program control

● The amount of data moved from memory into cache is called 
the cache “line” size
○ Not under program control



BSTs?

● Looking things up in balanced binary search trees is O(log n), so 
even for n = 239 (512GB) we need not worry about minutes or 
hours

● Still, number of disk accesses matters:
○ Pretend for a minute we had an AVL tree of height 55
○ The total number of nodes could be?_________
○ Most of the nodes will be on disk: the tree is shallow, but it is still 

many gigabytes big so the entire tree cannot fit in memory
■ Even if memory holds the first 25 nodes on our path, we still 

potentially need 30 disk accesses if we are traversing the entire 
height of the tree.



Note about numbers

● Note: All the numbers in this lecture are “ballpark” “back of the 
envelope” figures

● Moral: Even if they are off by, say, a factor of 5, the moral is the 
same:

If your data structure is mostly on disk, 
you want to minimize disk accesses

● A better data structure in this setting would exploit the block size 
and relatively fast memory access to avoid disk accesses…



Trees as Dictionaries

(N = 10 million) [Example from Weiss]

In worst case, each node access is a disk access, number of accesses:

Worst case big-O # Disk accesses

● BST

● AVL

● B Tree



Our goal

● Problem: A dictionary with so much data most of it is on disk

● Desire: A balanced tree (logarithmic height) that is even 
shallower than AVL trees so that we can minimize disk 
accesses and exploit disk-block size

● A key idea: Increase the branching factor of our tree



M-ary Search Tree

Build some sort of search tree with branching factor M:
● Have an array of sorted children (Node[])
● Choose M to fit snugly into a disk block (1 access for array)

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4)

What is the height of this tree?

What is the worst case running time of find?



Complexity of Find in M-ary Search Tree

How many hops?

How much work at each level?
(find which child to take)

Overall complexity?



Questions about M-ary search trees

● What should the order property be?
● How would you rebalance (ideally without more disk 

accesses)?
● Storing real data at inner-nodes (like we do in a BST) 

seems kind of wasteful…
○ To access the node, will have to load the data from disk, even 

though most of the time we won’t use it!!
○ Usually we are just “passing through” a node on the way to the 

value we are actually looking for.
● So let’s use the branching-factor idea, but for a 

different kind of balanced tree:
○ Not a binary search tree
○ But still logarithmic height for any M > 2

2 Data

1 Data 6 Data

4 Data

5 Data



B+ Trees (we and the book say “B Trees”)

● Two types of nodes: internal nodes & leaves
● Each internal node has room for up to M-1 keys and M children

○ No other data; all data at the leaves!
● Order property: Subtree between

keys a and b contains only data that is
≥ a and < b (notice the ≥)

● Leaf nodes have up to L sorted
data items

● As usual, we’ll ignore the
“along for the ride” data



B Trees: Leaves vs Internal Nodes

Remember:

● Leaves store data
● Internal nodes are 

‘signposts’

● There are different ways 
to implement these - pay 
attention to how we talk 
about them!



Find

● Different from BST in that we don’t store data at internal nodes
● But find is still an easy root-to-leaf recursive algorithm

○ At each internal node do binary search on (up to) M-1 keys to find the 
branch to take

○ At the leaf do binary search on the (up to) L data items
● But to get logarithmic running time, we need a balance condition…



B Tree Structure Properties

● Internal nodes
○ Have between ⌈M/2⌉ and M children, i.e., at least half full

● Leaf nodes
○ All leaves at the same depth
○ Have between ⌈L/2⌉ and L data items, i.e., at least half full

● Root (special case)
○ If tree has ≤ L items, root is a leaf (occurs when starting up, otherwise 

unusual)
○ Else has between 2 and M children

● Any M > 2 and L will work, but:
We pick M and L based on disk-block size



Example
Note on notation: Inner nodes drawn horizontally,

leaves vertically to distinguish. Include empty cells

Suppose M=4 (max # pointers in internal node) and L=5 (max # data items at leaf)

● All internal nodes have at least 2 children
● All leaves have at least 3 data

items (only keys here)
● All leaves at

same depth

find(28)

How many disk 
blocks did we 
touch?













Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!
● Split the leaf into two nodes:

○ Original leaf with ⌈(L+1)/2⌉ smaller items
○ New leaf with ⌊(L+1)/2⌋ = ⌈L/2⌉ larger items

● Attach the new child to the parent
○ Adding new key to parent in sorted order



Insertion Algorithm continued

3. If step (2) caused the internal node parent to have M+1 children,
● Split the node into two nodes

○ Original node with ⌈(M+1)/2⌉ smaller items
○ New node with ⌊(M+1)/2⌋ = ⌈M/2⌉ larger items

● Attach the new child to the parent
○ Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too

● So repeat step 3 up the tree until a node doesn’t overflow
● If the root overflows, make a new root with two children

○ This is the only case that increases the tree height



Worst-Case Efficiency of Insert

● Find correct leaf: O(log2M logMn)
● Insert in leaf:  O(L)
● Split leaf: O(L)
● Split parents all the way up to root: O(M logMn)

Total: O(L + M logMn)

But it’s not that bad:

● Splits are not that common (M & L are likely to be large)
● Disk accesses are the name of the game: O(logMn)

























Deletion Algorithm

1. Remove the data from its leaf

2. If the leaf now has ⌈L/2⌉-1 items, underflow!
● If a neighbor has > ⌈L/2⌉ items, adopt and update parent
● Else merge node with neighbor

○ Guaranteed to have a legal number of items
○ Parent now has one less node



Deletion Algorithm continued

3. If step (2) caused the internal node parent to have ⌈M/2⌉-1 children, 
underflow!
● If a neighbor has > ⌈M/2⌉ items, adopt and update parent
● Else merge node with neighbor

○ Guaranteed to have a legal number of items
○ Parent now has one less node

Merging at a node (step 3) could make the parent underflow too

● So repeat step 3 up the tree until a node doesn’t underflow
● If the root went from 2 children to 1, delete the root and make the child 

the root
○ This is the only case that decreases the tree height



Worst-Case Efficiency of Delete

● Find correct leaf: O(log2M logMn)
● Remove from leaf: O(L)
● Adopt from or merge with neighbor: O(L)
● Adopt or merge all the way up to root: O(M logMn)

Total: O(L + M logMn)

But it’s not that bad:

● Merges are not that common
● Disk accesses are the name of the game: O(logMn)



Determining M & L

Say:

1 disk block = 1024 bytes
Key = 8 bytes
Pointer  = 4 bytes
Data(K, V) = 500 bytes
                         (includes key)

Determining L: How much data can fit?

L = 1024 / 500 = about 2

Determining M: how many interior 
nodes can fit?

Each interior node has M pointers and 
M-1 keys.

1024 ≥ 4M + 8(M-1)
1024 ≥ 4M + 8M - 8
1024 ≥ 12M - 8
1024+8 ≥ 12M
1032/12 ≥ M
M = 86



Naïve approach in Java

Even if we 
assume data 
items have int 
keys, you cannot 
get the data 
representation you 
want for “really big 
data”

interface Keyed {
  int getKey();
}
class BTreeNode<E implements Keyed> {
  static final int M = 128;
  int[] keys   = new int[M-1];
  BTreeNode<E>[] children   = new BTreeNode[M];
  int numChildren = 0;
}
class BTreeLeaf<E implements Keyed> {
  static final int L = 32;
  E[] data = (E[])new Object[L];
  int numItems = 0;
}



What that looks like in Java
All the red 
references 

indicate 
“unnecessary” 
indirection that 

might be avoided 
in another 

programming 
language.



The moral

● The whole idea behind B trees was to keep related data in 
contiguous memory

● But that’s “the best you can do” in Java
○ Again, the advantage is generic, reusable code

○ But for your performance-critical web-index, not the way to implement 
your B-Tree for terabytes of data

● Other languages (e.g., C++) have better support for “flattening 
objects into arrays”

● Levels of indirection matter!



Conclusion: Balanced Trees

● Balanced trees make good dictionaries because they guarantee 
logarithmic-time find, insert, and delete
○ Essential and beautiful computer science
○ But only if you can maintain balance within the time bound

● AVL trees maintain balance by tracking height and allowing all children to 
differ in height by at most 1

● B trees maintain balance by keeping nodes at least half full and all leaves at 
same height

● Other great balanced trees (see text; worth knowing they exist)
○ Red-black trees: all leaves have depth within a factor of 2
○ Splay trees: self-adjusting; amortized guarantee; no extra space for height 

information


