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Class Updates

● P1 due tomorrow night!
○ No more than 2 late days can be used on this project
○ Optional: submit to the hidden test runner to get faster feedback 

on your P1 (before the TAs finish grading) - linked from the course 
website

● Ex1 grades released
○ Regrades: open after 48 hours, until 1 week from today

● P2 released tomorrow
○ You already know everything for the first checkpoint!



Balanced BST

Observation:

● BST: the shallower the better!
● For a BST with n nodes inserted in arbitrary order

○ Average height is O(log n) – see text for proof
○ Worst case height is O(n)

● Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) – strong enough!
2. is easy to maintain – not too strong!



Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal height



Potential Balance Conditions

3.  Left and right subtrees of every node have equal number of 
nodes

4.  Left and right subtrees of every node have equal height



The AVL Balance Condition

Left and right subtrees of every node have heights
differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 ≤ balance(x) ≤ 1

● Ensures small depth
○ We will prove this by showing that an AVL tree of height h must have 

a number of nodes exponential in h
● Easy (well, efficient) to maintain

○ Using single and double rotations



The AVL Tree Data Structure

Structural properties

1. Binary tree property (0,1, or 2 children)
2. Heights of left and right subtrees of 

every node differ by at most 1

Result:
Worst case depth of any node is:

O(log n)

Ordering property:

● Same as for BST

8

2 6

5

15

12 14

13

11

4 7

10

9



Ex1: An AVL tree?

6

1

4

10 12

11

8

7



Ex2: An AVL tree?
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Ex3: An AVL tree?

5

1

2

7

3 11

8

6

4



An AVL Tree
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An insert case
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Insert(2)

What is the minimum 
number of changes we 

could make to make this 
tree valid?



AVL tree operations

● AVL find:
○ Same as BST find

● AVL insert:
○ First BST insert, then check balance and potentially “fix” the AVL 

tree
○ Four different imbalance cases

● AVL delete:
○ The “easy way” is lazy deletion
○ Otherwise, like insert we do the deletion and then have several 

imbalance cases



AVL tree insert

Let b be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

1. left subtree of the left child of b.
2. right subtree of the left child of b.
3. left subtree of the right child of b.
4. right subtree of the right child of b.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a double rotation.
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Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or 

may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance and 

perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:

● There must be a deepest element that is imbalanced after the insert
● After rebalancing this deepest node, every node is balanced
● So at most one node needs to be rebalanced



Case #1 Example
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Case #1 Example

Insert(6)

Insert(3)

Insert(1)

Third insertion violates balance property
● Happens to be at the root

What is the only way to fix this?
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Fix: Apply “Single Rotation”

Single rotation: The basic operation we’ll use to rebalance

● Move child of unbalanced node into parent position
● Parent becomes the “other” child (always okay in a BST!)
● Other subtrees move in only way BST allows (next slide)

6

1

3

2

1

0 61

3

0

1

0

Single Rotation:
Rotate between self and child



Single Rotation Pseudo-Code

void RotateWithLeft(Node root) {
  Node temp = root.left
  root.left = temp.right
  temp.right = root
  root.height = max(root.right.height(),
                    root.left.height()) + 1
  temp.height = max(temp.right.height(),
                    temp.left.height()) + 1
  root = temp
}
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The general left-left case

● Node imbalanced due to insertion somewhere in left-left grandchild 
increasing height
○ This is 1 of 4 possible imbalance causes (other three coming)

● So we rotate at b, using BST facts: X < a < Y < b < Z
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Case #3 Example

Insert(1)

Insert(6)

Insert(3)



Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree 
or the right-left subtree

● First wrong idea: single rotation like we did for left-left
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Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree 
or the right-left subtree

● Second wrong idea: single rotation on the child of the unbalanced node
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Sometimes two wrongs make a right

● First idea violated the BST property
● Second idea didn’t fix balance
● But if we do both single rotations, starting with the second, it works!

(And not just for this example)
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Double Rotation:
1. Rotate problematic child and grandchild
2. Rotate between self and new child



Double Rotation Pseudo-Code

void DoubleRotateWithRight(Node root) {
  RotateWithLeft(root.right)
  RotateWithRight(root)
}
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Double Rotation Completed
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Insert, Summarized

● Insert as in a BST
● Check back up path for imbalance, which will be 1 of 4 cases:

○ node’s left-left grandchild is too tall
○ node’s left-right grandchild is too tall
○ node’s right-left grandchild is too tall
○ node’s right-right grandchild is too tall

● Only one case occurs because tree was balanced before insert
● After the appropriate single or double rotation, the 

smallest-unbalanced subtree has the same height as before the 
insertion

● So all ancestors are now balanced



Insert into an AVL tree: a b e c d

(if you have time, add f)



Height of an AVL tree?
height Minimal AVL Tree Number of nodes
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Height of an AVL tree?

Using the AVL balance property, we can determine the minimum 
number of nodes in an AVL tree of height h

Let S(h) be the minimum # of nodes in an AVL tree of height h, 
then:

S(h) = S(h-1) + S(h-2) + 1

S(0) = 1

S(1) = 2



The Golden Ratio

This is a special number

● Aside: Since the Renaissance, many artists and architects have proportioned 
their work (e.g., length:height) to approximate the golden ratio: If (a+b)/a 
= a/b, then a = ϕb

● We will need one special arithmetic fact about ϕ:

ϕ2 = ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4
= (6 + 2*51/2)/4
= (3 + 51/2)/2
= 1 + (1 + 51/2)/2
= 1 + ϕ



The Proof

Theorem: For all h ≥ 0, S(h) > ϕh – 1

Proof: By induction on h

Base cases:

S(0) = 1 : 1 > ϕ0 – 1
1 > 1 - 1
1 > 0

S(1) = 2 : 2 > ϕ1 – 1 
2 > approx 0.62



The Proof

Inductive case (k > 1):
Show S(k+1) > ϕk+1 – 1 assuming S(k) > ϕk – 1 and S(k-1) > ϕk-1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S

> 1 + ϕk – 1 + ϕk-1 – 1 by induction

= ϕk + ϕk-1 – 1 by arithmetic (1-1=0)

= ϕk-1 (ϕ + 1) – 1 by arithmetic (factor ϕk-1 )

= ϕk-1 ϕ2 – 1 by special property of ϕ:   ϕ2 = 1 + ϕ

= ϕk+1 – 1 by arithmetic (add exponents)



Good news

We know S(k) > ϕk – 1

- Remember that S(h) represented the minimum number of nodes

Therefore in Big-O speak:

n > ϕh – 1

n > ϕh

logϕ(n) > h

Therefore the height of an AVL tree is bounded by log n - which means our find, 
insert and delete operations are all log n!



Exercise 4: Single and Double Rotations:

Inserting what integer values 
would cause the tree to need a:

1. Single rotation?

2. Double rotation?

3. No rotation?


