CSE 332
Data Structures & Parallelism

Dictionaries & Binary Search Trees

Melissa Winstanley
Spring 2024

Where we are

Studying the absolutely essential ADTs of computer science and classic data
structures for implementing them

ADTs so far:
1. Stack: push, pop, 1sEmpty,
2. Queue: enqueue, dequeue, isEmpty, ..

(:?: Priority queue: insert, deleteMin,

Next:

4. Dictionary (a.k.a. Map): associate keys with values
- Probably the most common, way more than priority queue

Today

e Dictionaries
e [rees

The Dictionary (aka Map) ADT

Data:
o setof (key, value) pairs insert(mwinst 525)
e keys must be comparable ——

Operations:

(for some implementations)

find(crajas) .

insert (key,val) red
places (key,val) in map

(If key already used, overwrites existing entry)

£ind (key) —

returns val associated with key

delete (key)

. e crajas:
red

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
e Akey is present or not (no repeats)
For £ind, insert, delete, there is little difference

e In dictionary, values are “just along for the ride”
e S0 same data-structure ideas work for dictionaries and sets
e Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

e union, interseetion, is_subset. etc.

e Notice these are binary operators on sets
e \We will want different data structures to implement these operators

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to
retrieve it efficiently — a dictionary is the ADT to use!

- Lots of programs do that!

e Networks: router tables

e Operating systems: page tables

e Compilers: symbol tables

e Databases: dictionaries with other nice properties
e Search: inverted indexes, phone directories, ...
e Biology: genome maps

[

Simple implementations

For dictionary with n key/value pairs

insert find delete
Unsorted linked list L O(n) Ol O (")
Unsorted array G(Yﬂ O(V‘\w 0 (Y\\
Sorted linked list O (N O O (W)
Sorted array &, (/(\\ 0 UD \9\ ,—ﬂl DL{\>

WEe'll see a Binary Search Tree (BST) probably does better, but not in the worst
case unless we keep it balanced

Lazy Deletion (e.g. in a sorted array) Ae_(ﬂﬁ

10 12 24 30 41 42 44 45 50
M X M M X M X M ™

A general technique for making delete as fast as £ind:

e Instead of actually removing the item just mark it deleted
e No need to shift values, etc.

Plusses:

e Simpler

e (Can do removals later in
batches

e If re-added soon thereafter, just

unmark the deletion

Minuses:

Extra space for the “is-it-deleted” flag
Deleted nodes waste space

find O(log m) time where m is
data-structure size (m >= n)

May complicate other operations

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three
different data structures:

1. AVL trees
- Binary search trees with guaranteed balancing
2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables
- Not tree-like at all

Skipping: Other balanced trees (rw

Why Trees?

Trees offer speed ups because of their branching factors

e Binary Search Trees are structured forms of binary search

Binary Search Tree

find(4)

_

AN

-

Why Trees?

Trees offer speed ups because of their branching factors

e Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

T ——a

Worst-Case O(n) O(n)
Average-Case O(log n) O(log n) O(log n) /

Binary Trees

e Binary tree is empty or
o |a root (with data)
o |a left subtree (maybe empty)
o |a right subtree (maybe empty)

e Representation: \ey
)

Left Right
\pointer pointer pointers!
—

e For a dictionary, data will include a
key and a value

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:

h
e max# of leaves: 72 K%\?\ \
\

e max # of nodes: 2\“) —

e min # of leaves: \

e min # of nodes: \/\X—\

Calculating height

What is the height of a tree with root root?

int treeHeight (Node root) {

2797

Calculating height T khw = CF ZTLD/Q\

What is the height of a tree with root root?

int EgggﬂeigthNode root) {

i1f (root == null)
return -1
return 1 + max(treeHeight (root.left),
treeHeight (root.right))

}

Running time for n nodeseach node is visited once)

Note: non-recursive is painful - need your own stack of pending nodes.
Much easier to use recursion

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

e Pre-order: root, left subtree, right subtree
+ o 2109

e [n-order: left subtree, root, right subtree
22X 4 +5

e Post-order: left subtree, right subtree, root

More on traversals

Sometimes order doesn’t matter int inOrderTraverse (Node t) {
if(t '= null) {
traverse(tXIEiE);

Sometimes order matters @rocess (t.element);
traverse (t.fFight)\
e Example: print tree with parent }

above indented children }
(pre-order)

e Example: evaluate an
expression tree (post-order)

e Example: sum all elements

Binary Search Tree

e Structural property (“binary”)
o each node has 2 children
o result: keeps operations simple
e QOrder property
o all keys in left subtree smaller than
node’s key
o all keys in right subtree larger than
node’s key
o result: easy to find any given key

No duplicates this time!

Are these BSTs?

Find in BST, Recursive SN \\\\

Data find (Key key, Node root) {
if (root == null)

e ° { return null;

if (key < root.key)

a ° @ return find(key,root.left);
if (key > root.key)

return find(key,root.right) ;
° e /return root.data);
| o=

Find in BST, Iterative

° Data find(Key key, Node root) {
~,>while(root = null
e ° && root.key '= key) {
if (key < root.key)
root = root.left;

OO @ e

root root.right;

}
@ e if (root == null)

return null;

@ @ return root.data;
} i

Other “finding operations”

e Find minimum node

L

e Find maximum node

(~

Insert in BST

insert(lOﬁ%JK\“\>

insert (7)

insert (31)

(New) insertions happen only at
leaves - easy!

1. Find
2. Create a new node

Deletion in BST

Why might deletion be harder than
insertion?

Deletion

e Removing an item disrupts the tree structure

e Basic idea:
o find the node to be removed
o Remove it
o “fix” the tree so that it is still a binary search tree

e Three cases:
o node has no children (leaf)

o node has one child
o node has two children

Deletion - The Leaf Case

O
3)
o ° delete (1

Deletion - The One Child Case

delete (11)

Deletion - The Two Child Case

(2
delete (20)
o @ elete

° o 0 ° What can we replace 20 with?
(5)

Deletion — The Two Child Case

|dea: Replace the deleted node with a value guaranteed to be
between the two child subtrees.

Options:

® successor from right subtree: £indMin (node.right)

e predecessor from left subtree: findMax (node.left)
o These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
e Leaf or one child case — easy cases of delete!

Deletion Using Successor

findMin(right sub tree) --> 21

delete (20)

Deletion Using Predecessor

findMax(left sub tree) --> 15

delete (20)

buildTree for BST

e \We had buildHeap, so let’s consider
buildTree
e Insertkeys1,2,3,4,5,6,7,8,9
into an empty BST
o If inserted in given order, what is
the tree?
o What big-O runtime for this kind of
sorted input?
o Is inserting in the reverse order any
better?

Balanced BST

Observation:

e BST: the shallower the better!

e Fora BST with n nodes inserted in arbitrary order
o Average height is O(log n) — see text for proof
o Worst case height is O(n)

e Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) - strong enough!
2. is easy to maintain — not too strong!

