CSE 332 Data Structures & Parallelism

Dictionaries & Binary Search Trees

Melissa Winstanley
Spring 2024

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

- Stack:
- push, pop, isEmpty, ...
 enqueue, dequeue, isEmpty, ... 2. Queue:
- Priority queue: insert, deleteMin, ...

Next:

- Dictionary (a.k.a. Map): associate keys with values
 - Probably the most common, way more than priority queue

Today

- Dictionaries
- Trees

The Dictionary (aka Map) ADT

Data: set of (key, value) pairs insert(mwinst, green) keys must be comparable (for some implementations) Operations: find(crajas) insert(key,val) red places (key,val) in map (If key already used, overwrites existing entry) crajas: find(key) red returns val associated with key delete(key)

Comparison: Set ADT vs. Dictionary ADT

The **Set ADT** is like a Dictionary without any values

A key is *present* or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
- Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is subset, etc.
- Notice these are binary operators on sets
- We will want different data structures to implement these operators

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently – a **dictionary** is the ADT to use!

- Lots of programs do that!
- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, ...
- Biology: genome maps
- ...

Simple implementations

For dictionary with *n* key/value pairs

	insert	find	delete
Unsorted linked list	D470(n)	O(n)	(n)
Unsorted array	0(n)	0(n)	(n)
Sorted linked list	0(1)	0(n)	0(n)
Sorted array	0(1)	0(1690)	0(1)

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Lazy Deletion (e.g. in a sorted array) & (41)

10	12	24	30	41	42	44	45	50
V	X	V	V	X	V	X	V	V

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted
- No need to shift values, etc.

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Deleted nodes waste space
- find O(log m) time where m is data-structure size (m >= n)
- May complicate other operations

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different data structures:

- 1. AVL trees
 - Binary search trees with guaranteed balancing
- 2. B-Trees
 - Also always balanced, but different and shallower
 - B!=Binary; B-Trees generally have large branching factor
- 3. Hashtables
 - Not tree-like at all

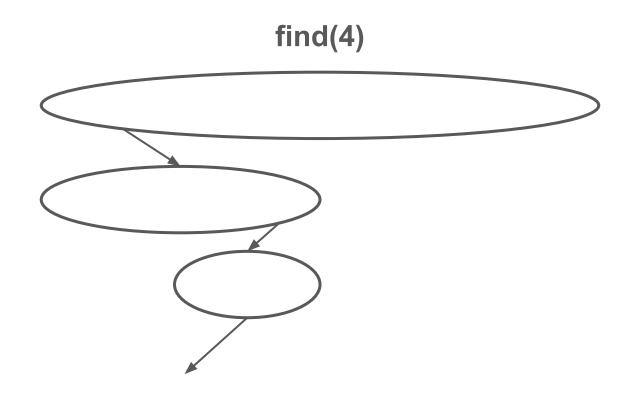
Skipping: Other balanced trees (red-black, splay)

Why Trees?

Trees offer speed ups because of their branching factors

Binary Search Trees are structured forms of binary search

Binary Search Tree



Why Trees?

Trees offer speed ups because of their branching factors

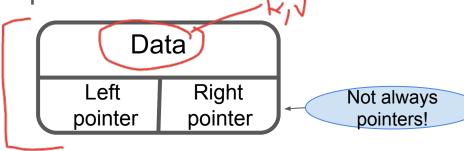
Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

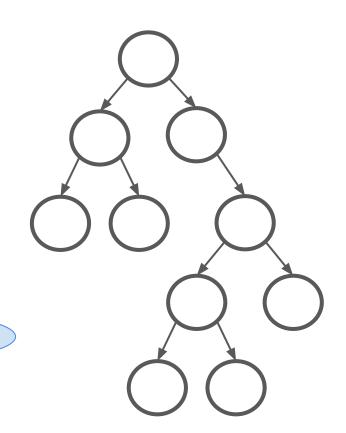
	Insert	Find	Delete
Worst-Case	O(n)	O(n)	O(n)
Average-Case	O(log n)	O(log n)	O(log n)

Binary Trees

- Binary tree is empty or
 - a root (with data)
 - o a left subtree (maybe empty)
 - o a right subtree (maybe empty)
- Representation:



 For a dictionary, data will include a key and a value



Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

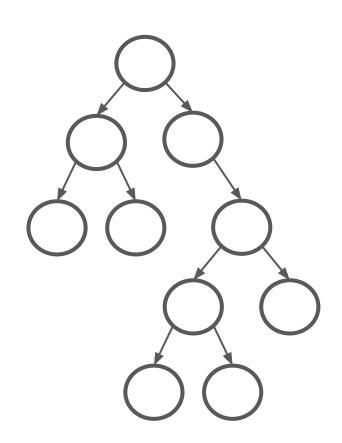
For binary tree of height *h*:

- max # of leaves: 2^h
- max # of nodes: 2^{h+1} -\
- min # of leaves:
- min # of nodes:

Calculating height

What is the height of a tree with root root?

```
int treeHeight(Node root) {
    ???
}
```



Calculating height

$$T(n) = C + 2T(2)$$

What is the height of a tree with root root?

Running time for n nodes: O(n) (each node is visited once)

Note: non-recursive is painful - need your own stack of pending nodes. Much easier to use recursion

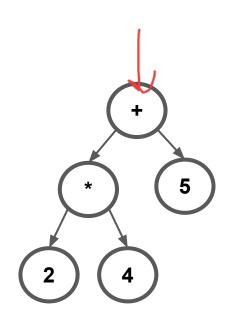
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Pre-order: root, left subtree, right subtree

In-order: left subtree, root, right subtree

Post-order: left subtree, right subtree, root



More on traversals

Sometimes order doesn't matter

Example: sum all elements

Sometimes order matters

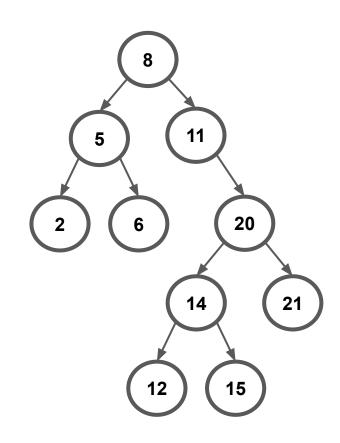
- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

```
int inOrderTraverse(Node t) {
   if(t != null) {
      traverse(t.left);
      process(t.element);
      traverse(t.right);
   }
}
```

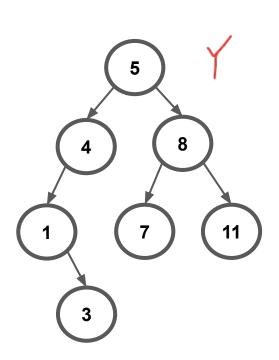
Binary Search Tree

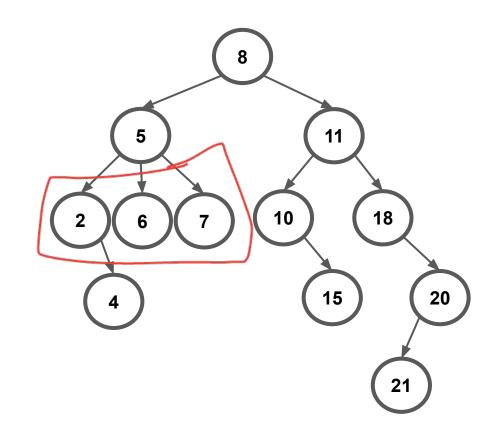
- Structural property ("binary")
 - o each node has 2 children
 - result: keeps operations simple
- Order property
 - all keys in left subtree smaller than node's key
 - all keys in right subtree larger than node's key
 - result: easy to find any given key

No duplicates this time!

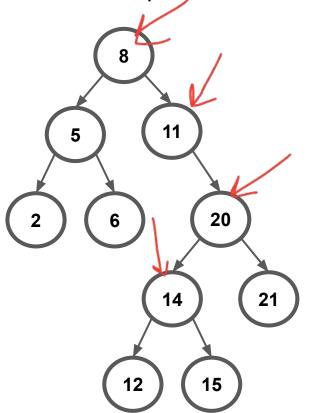


Are these BSTs?





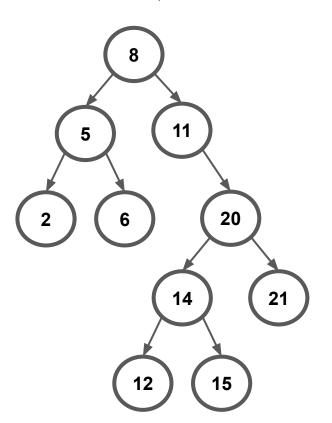
Find in BST, Recursive



```
Fir3(14)
```

```
Data find(Key key, Node root) {
 if(root == null)
    return null;
  if(key < root.key)</pre>
    return find(key,root.left);
  if(key > root.key)
    return find(key,root.right);
 return root.data;
```

Find in BST, Iterative

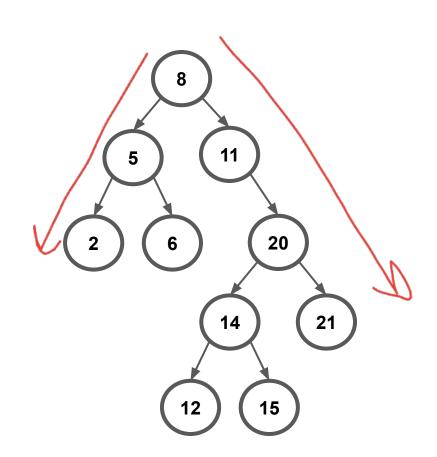


```
Data find(Key key, Node root) {
 while (root != null
        && root.key != key) {
    if(key < root.key)</pre>
      root = root.left;
    else
      root = root.right;
  if(root == null)
    return null;
  return root.data;
```

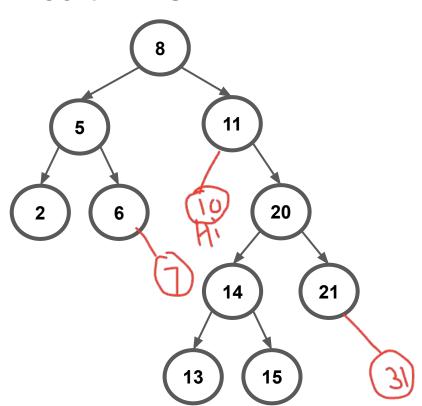
Other "finding operations"

• Find minimum node

Find maximum node



Insert in BST

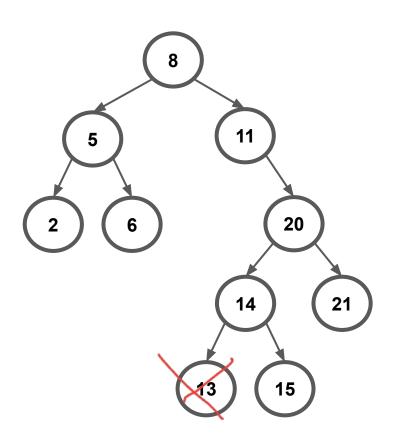


```
insert(10)
insert(7)
insert(31)
```

(New) insertions happen only at leaves - easy!

- 1. Find
- 2. Create a new node

Deletion in BST



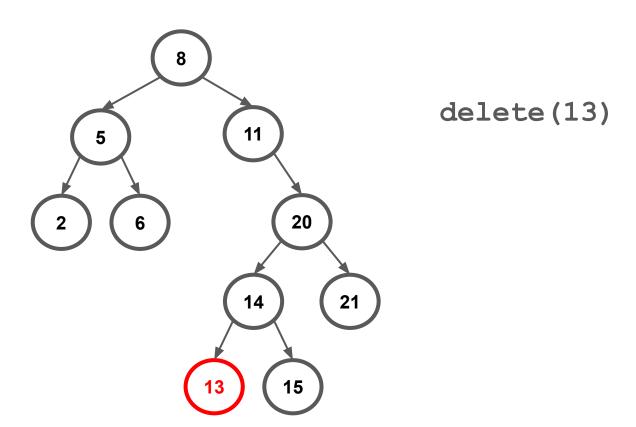
Why might deletion be harder than insertion?

delet(13) delete(11)

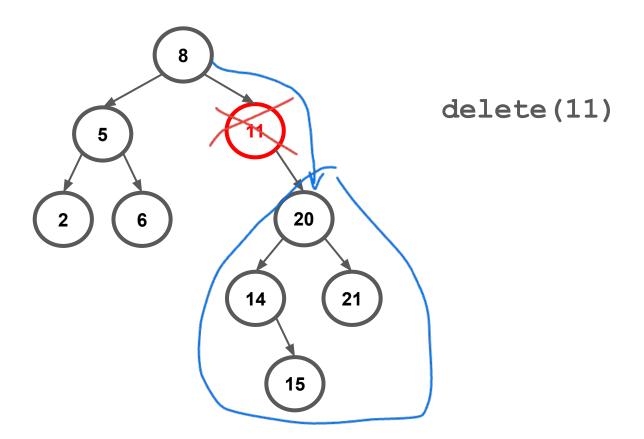
Deletion

- Removing an item disrupts the tree structure
- Basic idea:
 - find the node to be removed
 - Remove it
 - "fix" the tree so that it is still a binary search tree
- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children

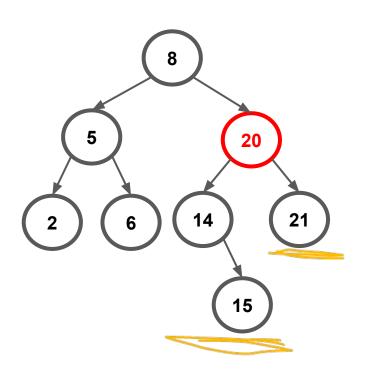
Deletion - The Leaf Case



Deletion - The One Child Case



Deletion - The Two Child Case



delete(20)

What can we replace **20** with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees.

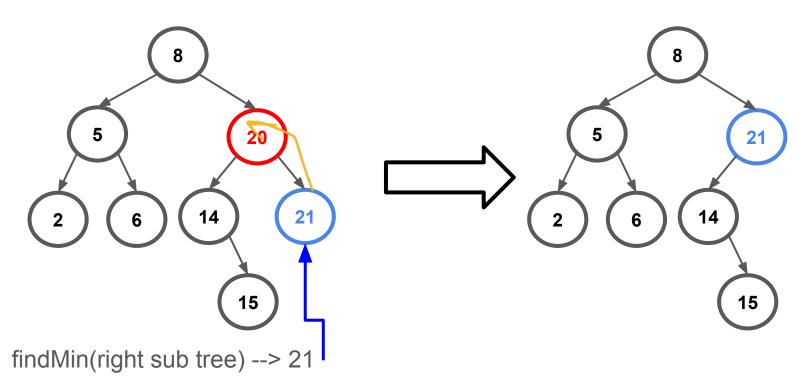
Options:

- successor from right subtree: findMin (node.right)
- predecessor from left subtree: findMax (node.left)
 - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

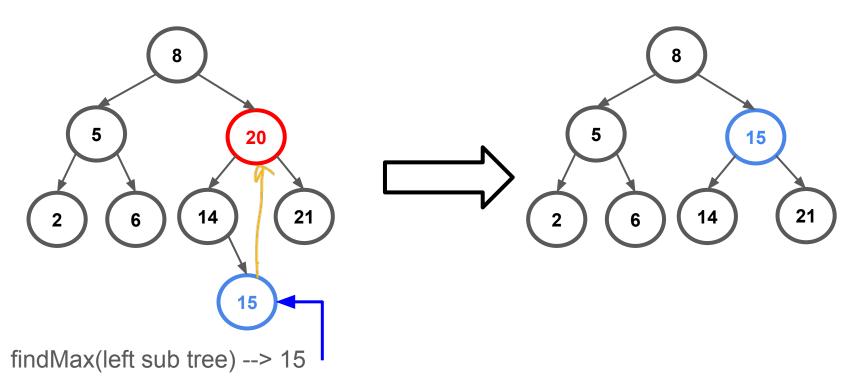
Leaf or one child case – easy cases of delete!

Deletion Using Successor



delete(20)

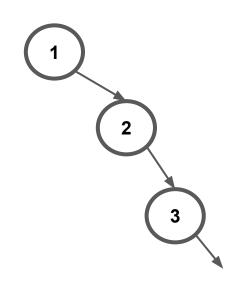
Deletion Using Predecessor



delete(20)

buildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9
 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input?
 - Is inserting in the reverse order any better?



Balanced BST

Observation:

- BST: the shallower the better!
- For a BST with **n** nodes inserted in arbitrary order
 - Average height is O(log n) see text for proof
 - Worst case height is O(n)
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

- ensures depth is always O(log n) strong enough!
- 2. is easy to maintain not too strong!