
CSE 332
Data Structures & Parallelism

Dictionaries & Binary Search Trees

Melissa Winstanley
Spring 2024

Where we are

Studying the absolutely essential ADTs of computer science and classic data
structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, …
2. Queue: enqueue, dequeue, isEmpty, …
3. Priority queue: insert, deleteMin, …

Next:

4. Dictionary (a.k.a. Map): associate keys with values
- Probably the most common, way more than priority queue

Today

● Dictionaries
● Trees

The Dictionary (aka Map) ADT

Data:

● set of (key, value) pairs
● keys must be comparable

(for some implementations)

Operations:

● insert(key,val)
places (key,val) in map
(If key already used, overwrites existing entry)

● find(key)
returns val associated with key

● delete(key)

● mwinst:
green

...

● crajas:
red

insert(mwinst, green)

find(crajas)

red

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

● A key is present or not (no repeats)

For find, insert, delete, there is little difference

● In dictionary, values are “just along for the ride”
● So same data-structure ideas work for dictionaries and sets
● Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

● union, intersection, is_subset, etc.
● Notice these are binary operators on sets
● We will want different data structures to implement these operators

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to
retrieve it efficiently – a dictionary is the ADT to use!

- Lots of programs do that!

● Networks: router tables
● Operating systems: page tables
● Compilers: symbol tables
● Databases: dictionaries with other nice properties
● Search: inverted indexes, phone directories, …
● Biology: genome maps
● ...

Simple implementations

For dictionary with n key/value pairs

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst
case unless we keep it balanced

insert find delete

Unsorted linked list

Unsorted array

Sorted linked list

Sorted array

Lazy Deletion (e.g. in a sorted array)

A general technique for making delete as fast as find:

● Instead of actually removing the item just mark it deleted
● No need to shift values, etc.

Minuses:

● Extra space for the “is-it-deleted” flag
● Deleted nodes waste space
● find O(log m) time where m is

data-structure size (m >= n)
● May complicate other operations

Plusses:

● Simpler
● Can do removals later in

batches
● If re-added soon thereafter, just

unmark the deletion

10 12 24 30 41 42 44 45 50
✅ ❌ ✅ ✅ ❌ ✅ ❌ ✅ ✅

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three
different data structures:

1. AVL trees
- Binary search trees with guaranteed balancing

2. B-Trees
- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables
- Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

Why Trees?

Trees offer speed ups because of their branching factors

● Binary Search Trees are structured forms of binary search

Binary Search Tree

find(4)

Why Trees?

Trees offer speed ups because of their branching factors

● Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

Insert Find Delete

Worst-Case O(n) O(n) O(n)

Average-Case O(log n) O(log n) O(log n)

Binary Trees

● Binary tree is empty or
○ a root (with data)
○ a left subtree (maybe empty)
○ a right subtree (maybe empty)

● Representation:

● For a dictionary, data will include a
key and a value

Data

 Left Right
 pointer pointer

Not always
pointers!

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:

● max # of leaves:

● max # of nodes:

● min # of leaves:

● min # of nodes:

Calculating height

What is the height of a tree with root root?

int treeHeight(Node root) {

???

}

Calculating height

What is the height of a tree with root root?

Running time for n nodes: O(n) (each node is visited once)

Note: non-recursive is painful - need your own stack of pending nodes.
Much easier to use recursion

int treeHeight(Node root) {
 if(root == null)
 return -1
 return 1 + max(treeHeight(root.left),
 treeHeight(root.right))
}

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

● Pre-order: root, left subtree, right subtree

● In-order: left subtree, root, right subtree

● Post-order: left subtree, right subtree, root

+

2 4

* 5

More on traversals

Sometimes order doesn’t matter

● Example: sum all elements

Sometimes order matters

● Example: print tree with parent
above indented children
(pre-order)

● Example: evaluate an
expression tree (post-order)

int inOrderTraverse(Node t) {
 if(t != null) {
 traverse(t.left);
 process(t.element);
 traverse(t.right);
 }
}

Binary Search Tree

● Structural property (“binary”)
○ each node has 2 children
○ result: keeps operations simple

● Order property
○ all keys in left subtree smaller than

node’s key
○ all keys in right subtree larger than

node’s key
○ result: easy to find any given key

No duplicates this time!

8

2 6

5

12 15

14 21

20

11

Are these BSTs?

5

1

3

4

7 11

8

8

2 7

5

15

21

10

20

18

11

6

4

Find in BST, Recursive

Data find(Key key, Node root) {
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

8

2 6

5

12 15

14 21

20

11

Find in BST, Iterative

Data find(Key key, Node root) {
 while(root != null
 && root.key != key) {
 if(key < root.key)
 root = root.left;
 else
 root = root.right;
 }
 if(root == null)
 return null;
 return root.data;
}

8

2 6

5

12 15

14 21

20

11

Other “finding operations”

● Find minimum node

● Find maximum node

8

2 6

5

12 15

14 21

20

11

Insert in BST
insert(10)

insert(7)

insert(31)

(New) insertions happen only at
leaves - easy!

1. Find
2. Create a new node

8

2 6

5

13 15

14 21

20

11

Deletion in BST

Why might deletion be harder than
insertion?

8

2 6

5

13 15

14 21

20

11

Deletion

● Removing an item disrupts the tree structure
● Basic idea:

○ find the node to be removed
○ Remove it
○ “fix” the tree so that it is still a binary search tree

● Three cases:
○ node has no children (leaf)
○ node has one child
○ node has two children

Deletion - The Leaf Case

delete(13)

8

2 6

5

13 15

14 21

20

11

Deletion - The One Child Case

delete(11)

8

2 6

5

15

14 21

20

11

Deletion - The Two Child Case

delete(20)

What can we replace 20 with?

8

2 6

5

15

14 21

20

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees.

Options:
● successor from right subtree: findMin(node.right)
● predecessor from left subtree: findMax(node.left)

○ These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
● Leaf or one child case – easy cases of delete!

Deletion Using Successor

findMin(right sub tree) --> 21

delete(20)

8

2 6

5

15

14 21

20

8

2 6

5

15

14

21

Deletion Using Predecessor

findMax(left sub tree) --> 15

delete(20)

8

2 6

5

15

14 21

20

8

2 6

5

14

15

21

buildTree for BST

● We had buildHeap, so let’s consider
buildTree

● Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9
into an empty BST
○ If inserted in given order, what is

the tree?
○ What big-O runtime for this kind of

sorted input?
○ Is inserting in the reverse order any

better?

1

3

2

Balanced BST

Observation:

● BST: the shallower the better!
● For a BST with n nodes inserted in arbitrary order

○ Average height is O(log n) – see text for proof
○ Worst case height is O(n)

● Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always O(log n) – strong enough!
2. is easy to maintain – not too strong!

