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Today

● Analyzing Recursive Code
● Solving Recurrences



Analyzing code
Basic operations take “some amount of” constant time

• Arithmetic
• Assignment
• Access one Java field or array index
• Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Conditionals Time of condition plus time of slower branch

Function Calls Time of function’s body

Recursion Solve recurrence equation



Linear search

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
  for(int i=0; i < arr.length; ++i)
    if(arr[i] == k)
      return true;
    return false;
  }
}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Best case: 6-ish steps = O(1)

Worst case:
    5-ish steps * (arr.length) = O(n)



Analyzing Recursive Code

• Computing run-times gets interesting with recursion

• Say we want to perform some computation recursively on a list 
of size n
• Conceptually, in each recursive call we:

• Perform some amount of work, call it w(n)
• Call the function recursively with a smaller portion of the list

• So, if we do w(n) work per step, and reduce the problem size in 
the next recursive call by 1, we do total work:

T(n)=w(n)+T(n-1)

• With some base case, like T(1)=5=O(1)



Example Recursive code: sum array

Recursive:
● Recurrence is some

constant amount of work
O(1) done n times

Each time help is called, it does that O(1) amount of work, and then 
    calls help again on a problem one less than previous problem size
Recurrence Relation: T(n) = c

1
 + T(n-1)

Base case?  T(0) =

int sum(int[] arr){
  return help(arr,0);
}
int help(int[]arr,int i) {
  if(i==arr.length)
    return 0;
  return arr[i] + help(arr,i+1);
}



Today

● Analyzing Recursive Code
● Solving Recurrences



Solving Recurrence Relations

● Say we have the following recurrence relation:

T(n) = 6 “ish” + T(n-1)
T(1) = 9 “ish” base case



Solving Recurrence Relations

● Say we have the following recurrence relation:

T(n) = 6 “ish” + T(n-1)
T(1) = 9 “ish” base case

● Now we just need to solve it; that is, reduce it to a closed form.
● Start by writing it out:

T(n) = 6 + T(n-1)
     = 6 + 6 + T(n-2)
     = 6 + 6 + 6 + T(n-3)
     = 6 + 6 + 6 +…+ 6 + T(1) = 6 + 6 + 6 +…+ 6 + 9
     = 6k + T(n-k)



Solving Recurrence Relations

T(n) = 6k + T(n-k)

● We set k equal to n-1, because in order to reach the base case (1):

n - k = 1
n     = 1 + k
n - 1 = k

● We expanded it out n-1 times, so

T(n) = 6k + T(n-k)

     = 6(n-1) + T(1) = 6(n-1) + 9

     = 6n + 3 = O(n)

We’ll usually just use a constant (eg c1 or c2) instead of the literal “6” and “9”



Solving Recurrence Relations: Unrolling Method

1. Write out your recurrence relation
2. Unroll it several times
3. Write the unrolled function in terms of some variable k (or i, 

whatever you like)
4. Figure out what k has to equal when you hit the base case (for 

instance, when you reach T(1)).
5. Solve!



Binary Search

Recurrence Relation:
               Base Case:

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
  return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
  int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
  if(lo==hi)      return false;
  if(arr[mid]==k) return true;
  if(arr[mid]< k) return help(arr,k,mid+1,hi);
  else            return help(arr,k,lo,mid);
}



Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

T(n) = c2 + T(n/2) T(1) = c1

2. “Expand” the original relation to find an equivalent general expression in 
terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value 
which reduces the problem to a base case



Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

T(n) = c2 + T(n/2) T(1) = c1

2. “Expand” the original relation to find an equivalent general expression in terms of 
the number of expansions.

T(n) = c2 + c2 + T(n/4) 
T(n) = c2 + c2 + c2 + T(n/8) 
T(n) = c2k + T(n/(2k)) (where k is the number of expansions)

3. Find a closed-form expression by setting the number of expansions to a value which 
reduces the problem to a base case

n/(2k) = 1   means   n = 2k   means   k = log n
T(n) = c2 log n + c1   (get to base case and do it)
T(n) is O(log n)



Another example: a binary version of sum

Recurrence?int sum(int[] arr){
  return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
  if(lo==hi) return 0;
  if(lo==hi-1) return arr[lo];
  int mid = (hi+lo)/2;
  return help(arr,lo,mid)
         + help(arr,mid,hi);
}



Another example: a binary version of sum

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

int sum(int[] arr){
  return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
  if(lo==hi) return 0;
  if(lo==hi-1) return arr[lo];
  int mid = (hi+lo)/2;
  return help(arr,lo,mid)
         + help(arr,mid,hi);
}



Another example: a binary version of sum: tree method

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

T(n/2)

c2

T(n/2)



Another example: a binary version of sum

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

c2

c2

c2

T(n/4) T(n/4) T(n/4) T(n/4)



Another example: a binary version of sum

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

c2

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)



Another example: a binary version of sum

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

At each level, we have 2k * c2 work, where k is the depth of the level (plus base case)

c2 * (1 + 2 + 4 + 8 + ...)

c2

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

Level k=0

Level k=1

Level k=2

T(n) = c2 * (sum to k of 2k) + base case



Another example: a binary version of sum

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

What is the maximum k in terms of n? When does our recurred case hit T(1)?

n / 2k = 1 2k = n k = log n

c2

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)



Another example: a binary version of sum

Recurrence:

T(n) = c1      for n=0 and n=1
T(n) = c2 + 2T(n/2)

c2 * (1 + 2 + 4 + 8 + ...) for log n times (plus the base case)



More on Perfect Trees

Perfect tree: Every row is completely full

Height (h) # nodes (n) # leaves

0 1 1

1 3 2

2 7 4

3 15 8

h 2h+1 - 1 2h

See Weiss 1.2.3 (p4)



Another example: a binary version of sum

O(n)!!!



Solving Recurrence Relations: Tree Method

1. Write out your recurrence relation
2. Diagram it out as a tree several times
3. Write the unrolled function in terms of some variable k (or i, 

whatever you like)
4. Figure out what k has to equal when you hit the base case (for 

instance, when you reach T(1)).
5. Solve! Often using math.

Finite Geometric Series:Magic (i.e. log rules):
SECTION!!!!!



The Master Theorem

It’s still really hard to tell what the big-O is just by looking at 
it.
But fancy mathematicians have a formula for us to use!
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If

then

then

then

Master Theorem

Slide thanks to Kasey Champion!



Understanding The Master Theorem
● A measures how many 

recursive calls are triggered 
by each method instance

● B measures the rate of 
change for input 

● C measures the dominating 
term of the non recursive 
work within the recursive 
method

● D measures the work done 
in the base case
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Understanding The Master Theorem
The log of a < c case
○Recursive case does a lot of 

non recursive work in 
comparison to how quickly it 
divides the input size

○Most work happens in beginning 
of call stack

○Non recursive work in recursive 
case dominates growth, nc term
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Understanding The Master Theorem
The log of a = c
○Recursive case evenly splits 

work between non recursive 
work and passing along inputs 
to subsequent recursive calls

○Work is distributed across call 
stack  
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Understanding The Master Theorem

The log of a > c case
● Recursive case breaks 

inputs apart quickly and 
doesn’t do much non 
recursive work

● Most work happens near 
bottom of call stack
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Understanding The Master Theorem

NOT A SUBSTITUTE FOR 
KNOWING HOW TO 
UNROLL / TREE!

We may ask you that on 
exams, etc

But the Master Theorem is 
good for checking your 
work
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