CSE 332 Data Structures & Parallelism

Recurrence Relations

Melissa Winstanley Spring 2024

Today

- Analyzing Recursive Code
- Solving Recurrences

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

Consecutive statements Loops Conditionals Function Calls Recursion

Sum of time of each statement Num iterations * time for loop body Time of condition plus time of slower branch Time of function's body Solve recurrence equation

Linear search

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
  for(int i=0; i < arr.length; ++i)
    if(arr[i] == k)
    return true;
  return false;
    Worst c</pre>
```

Best case: 6-ish steps = O(1)

```
Worst case:
5-ish steps * (arr.length) = O(n)
```

Analyzing Recursive Code

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
 - Conceptually, in each recursive call we:
 - Perform some amount of work, call it **w(n)**
 - Call the function **recursively** with a **smaller** portion of the list
- So, if we do w(n) work per step, and reduce the problem size in the next recursive call by 1, we do total work:

T(n)=w(n)+T(n-1)

• With some base case, like T(1)=5=O(1)

Example Recursive code: sum array

Recursive:

 Recurrence is some constant amount of work O(1) done n times

```
int sum(int[] arr){
   return help(arr,0);
}
int help(int[]arr,int i) {
   if(i==arr.length)
      return 0;
   return arr[i] + help(arr,i+1);
}
```

Each time help is called, it does that O(1) amount of work, and then calls help again on a problem one less than previous problem size Recurrence Relation: $T(n) = c_1 + T(n-1)$ Base case? T(0) =

Today

- Analyzing Recursive Code
- Solving Recurrences

• Say we have the following recurrence relation:

T(n) = 6 "ish" + T(n-1)T(1) = 9 "ish" base case

• Say we have the following recurrence relation:

T(n) = 6 "ish" + T(n-1)T(1) = 9 "ish" base case

- Now we just need to solve it; that is, reduce it to a closed form.
- Start by writing it out:

$$\mathbf{T}(n) = 6 + \mathbf{T}(n-1)$$

= 6 + 6 + $\mathbf{T}(n-2)$
= 6 + 6 + 6 + $\mathbf{T}(n-3)$
= 6 + 6 + 6 + ...+ 6 + $\mathbf{T}(1) = 6 + 6 + 6 + ...+ 6 + 9$
= 6k + $\mathbf{T}(n-k)$

T(n) = 6k + T(n-k)

• We set k equal to n-1, because in order to reach the base case (1):

```
n - k = 1

n = 1 + k

n - 1 = k
```

• We expanded it out n-1 times, so

```
T(n) = 6k + T(n-k)
= 6(n-1) + T(1) = 6(n-1) + 9
= 6n + 3 = O(n)
```

We'll usually just use a constant (eg c_1 or c_2) instead of the literal "6" and "9"

Solving Recurrence Relations: Unrolling Method

- 1. Write out your recurrence relation
- 2. Unroll it several times
- 3. Write the unrolled function in terms of some variable *k* (or *i*, whatever you like)
- 4. Figure out what *k* has to equal when you hit the base case (for instance, when you reach T(1)).
- 5. Solve!

Binary Search

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
  return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
  int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
  if(lo==hi)
                  return false;
  if(arr[mid]==k) return true;
  if(arr[mid] < k) return help(arr,k,mid+1,hi);</pre>
  else
                  return help(arr,k,lo,mid);
```

Recurrence Relation: Base Case:

1. Determine the recurrence relation. What is the base case?

 $T(n) = c_2 + T(n/2)$ $T(1) = c_1$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

1. Determine the recurrence relation. What is the base case?

 $T(n) = c_2 + T(n/2)$ $T(1) = c_1$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

$$\begin{split} T(n) &= c_{2}^{} + c_{2}^{} + T(n/4) \\ T(n) &= c_{2}^{} + c_{2}^{} + c_{2}^{} + T(n/8) \\ T(n) &= c_{2}^{} k + T(n/(2^{k})) \end{split} \ \ (\text{where } k \text{ is the number of expansions}) \end{split}$$

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

```
n/(2^k) = 1 means n = 2^k means k = \log n

T(n) = c_2 \log n + c_1 (get to base case and do it)

T(n) is O(\log n)
```

```
int sum(int[] arr){
  return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
  if(lo==hi) return 0;
  if(lo==hi-1) return arr[lo];
  int mid = (hi+lo)/2;
  return help(arr,lo,mid)
         + help(arr,mid,hi);
```

Recurrence?

```
int sum(int[] arr){
  return help(arr,0,arr.length);
int help(int[] arr, int lo, int hi) { T(n) = c_2 + 2T(n/2)
  if(lo==hi) return 0;
  if(lo==hi-1) return arr[lo];
  int mid = (hi+lo)/2;
  return help(arr,lo,mid)
         + help(arr,mid,hi);
```

Recurrence:

 $T(n) = c_1$ for n=0 and n=1

Another example: a binary version of sum: tree method

Recurrence:

 $T(n) = c_1 \quad \text{for } n=0 \text{ and } n=1$ $T(n) = c_2 + 2T(n/2)$

Recurrence:

 $T(n) = c_1 \quad \text{for n=0 and n=1}$ $T(n) = c_2 + 2T(n/2)$

Recurrence:

 $T(n) = c_1 \quad \text{for } n=0 \text{ and } n=1$ $T(n) = c_2 + 2T(n/2)$

Recurrence:

At each level, we have $2^{k} * c_{2}$ work, where k is the depth of the level (plus base case) $c_{2} * (1 + 2 + 4 + 8 + ...)$ T(n) = $c_{2} * (sum to k of 2^{k}) + base case$

Recurrence:

 $n/2^{k} = 1$

 C_2 $T(n) = c_1$ for n=0 and n=1 $T(n) = c_2 + 2T(n/2)$ **C**₂ C_2 C_2 C_2 C_2 C_2 T(n/8) T(n/8) T(n/8) T(n/8)T(n/8) T(n/8) T(n/8) T(n/8)

What is the maximum k in terms of n? When does our recurred case hit T(1)?

 $2^k = n$ $k = \log n$

Recurrence:

 $T(n) = c_1 \quad \text{for n=0 and n=1}$ $T(n) = c_2 + 2T(n/2)$

 $c_2 * (1 + 2 + 4 + 8 + ...)$ for log n times (plus the base case)

$$T(n)=c_{_1}n+\sum_{k=0}^{log(n)-1}c_{_2}2^k ~~=c_{_1}n+c_{_2}\sum_{k=0}^{log(n)-1}2^k$$

More on Perfect Trees

$$n = \sum_{i=0}^{h} 2^i = 2^{h+1} - 1$$

See Weiss 1.2.3 (p4)

Perfect tree: Every row is completely full

of sum $n = \sum_{i=0}^{h} 2^i = 2^{h+1} - 1$

Another example: a binary version of sum

$$egin{aligned} &= c_{_1}n + c_{_2}(2^{log(n)-1+1}-1) \ &= c_{_1}n + c_{_2}(2^{log(n)}-1) \ & egin{aligned} & egin{aligned$$

 $= c_{_1}n + c_{_2}(n-1) = c_{_1}n + c_{_2}n - c_{_2}$

Solving Recurrence Relations: Tree Method

- 1. Write out your recurrence relation
- 2. Diagram it out as a *tree* several times
- 3. Write the unrolled function in terms of some variable *k* (or *i*, whatever you like)
- 4. Figure out what *k* has to equal when you hit the base case (for instance, when you reach T(1)).
- 5. Solve! Often using math.

SECTION!!!!!

Magic (i.e. log rules):
$$a^{\log_b c} = c^{\log_b a}$$

The Master Theorem

$$F(n) = \begin{cases} 2 & \text{if } n < 3\\ 2F\left(\frac{n}{3}\right) + n + 2 & \text{otherwise} \end{cases}$$

It's still really hard to tell what the big-O is just by looking at it. But fancy mathematicians have a formula for us to use!

Master Theorem

 $F(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ a F\left(\frac{n}{b}\right) + \Theta(n^c) & \text{otherwise} \end{cases}$

If $\log_{h} a < c$ then $T(n) \in \Theta(n^{c})$ $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$

 $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$ lf

a=2 b=3 and c=1 $y = \log_{h} x$ is equal to $b^{y} = x$ $\log_3 2 = x \Rightarrow 3^x = 2 \Rightarrow x \cong 0.63$ $\log_3 2 < 1$ We're in case 1 $T(n) \in \Theta(n)$

Slide thanks to Kasey Champion!

lf

Master Theorem

 $F(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ a F\left(\frac{n}{b}\right) + \Theta(n^{c}) & \text{otherwise} \end{cases}$

If
$$\log_b a < c$$
 then $T(n) \in \Theta(n^c)$
If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$
If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

 $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

- A measures how many recursive calls are triggered by each method instance
- **B** measures the rate of change for input
- C measures the dominating term of the non recursive work within the recursive method
- **D** measures the work done in the base case

Master Theorem

 $F(n) = \begin{cases} d & if \ n \ is \ at \ most \ some \ constant \\ a \ F\left(\frac{n}{b}\right) + \Theta(n^{c}) & otherwise \end{cases}$

If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

The log of a < c case

- Recursive case does a lot of non recursive work in comparison to how quickly it divides the input size
- Most work happens in beginning of call stack

 Non recursive work in recursive case dominates growth, n^c term

Master Theorem

 $F(n) = \begin{cases} d & if \ n \ is \ at \ most \ some \ constant \\ a \ F\left(\frac{n}{b}\right) + \Theta(n^{c}) & otherwise \end{cases}$

If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

The log of a = c

- Recursive case evenly splits work between non recursive work and passing along inputs to subsequent recursive calls
- Work is distributed across call stack

Master Theorem

 $F(n) = \begin{cases} d & if n is at most some constant \\ a F\left(\frac{n}{b}\right) + \Theta(n^{c}) & otherwise \end{cases}$

If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

The log of a > c case

- Recursive case breaks inputs apart quickly and doesn't do much non recursive work
- Most work happens near bottom of call stack

Master Theorem

 $F(n) = \begin{cases} d & if \ n \ is \ at \ most \ some \ constant \\ a \ F\left(\frac{n}{b}\right) + \Theta(n^{c}) & otherwise \end{cases}$

If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$

If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

NOT A SUBSTITUTE FOR KNOWING HOW TO UNROLL / TREE!

We may ask you that on exams, etc

But the Master Theorem is good for checking your work