
CSE 332
Data Structures & Parallelism

Recurrence Relations

Melissa Winstanley
Spring 2024

Today

● Analyzing Recursive Code
● Solving Recurrences

Analyzing code
Basic operations take “some amount of” constant time

• Arithmetic
• Assignment
• Access one Java field or array index
• Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Conditionals Time of condition plus time of slower branch

Function Calls Time of function’s body

Recursion Solve recurrence equation

Linear search

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
 }
}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Best case: 6-ish steps = O(1)

Worst case:
 5-ish steps * (arr.length) = O(n)

Analyzing Recursive Code

• Computing run-times gets interesting with recursion

• Say we want to perform some computation recursively on a list
of size n
• Conceptually, in each recursive call we:

• Perform some amount of work, call it w(n)
• Call the function recursively with a smaller portion of the list

• So, if we do w(n) work per step, and reduce the problem size in
the next recursive call by 1, we do total work:

T(n)=w(n)+T(n-1)

• With some base case, like T(1)=5=O(1)

Example Recursive code: sum array

Recursive:
● Recurrence is some

constant amount of work
O(1) done n times

Each time help is called, it does that O(1) amount of work, and then
 calls help again on a problem one less than previous problem size
Recurrence Relation: T(n) = c

1
 + T(n-1)

Base case? T(0) =

int sum(int[] arr){
 return help(arr,0);
}
int help(int[]arr,int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr,i+1);
}

Today

● Analyzing Recursive Code
● Solving Recurrences

Solving Recurrence Relations

● Say we have the following recurrence relation:

T(n) = 6 “ish” + T(n-1)
T(1) = 9 “ish” base case

Solving Recurrence Relations

● Say we have the following recurrence relation:

T(n) = 6 “ish” + T(n-1)
T(1) = 9 “ish” base case

● Now we just need to solve it; that is, reduce it to a closed form.
● Start by writing it out:

T(n) = 6 + T(n-1)
 = 6 + 6 + T(n-2)
 = 6 + 6 + 6 + T(n-3)
 = 6 + 6 + 6 +…+ 6 + T(1) = 6 + 6 + 6 +…+ 6 + 9
 = 6k + T(n-k)

Solving Recurrence Relations

T(n) = 6k + T(n-k)

● We set k equal to n-1, because in order to reach the base case (1):

n - k = 1
n = 1 + k
n - 1 = k

● We expanded it out n-1 times, so

T(n) = 6k + T(n-k)

 = 6(n-1) + T(1) = 6(n-1) + 9

 = 6n + 3 = O(n)

We’ll usually just use a constant (eg c1 or c2) instead of the literal “6” and “9”

Solving Recurrence Relations: Unrolling Method

1. Write out your recurrence relation
2. Unroll it several times
3. Write the unrolled function in terms of some variable k (or i,

whatever you like)
4. Figure out what k has to equal when you hit the base case (for

instance, when you reach T(1)).
5. Solve!

Binary Search

Recurrence Relation:
 Base Case:

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

T(n) = c2 + T(n/2) T(1) = c1

2. “Expand” the original relation to find an equivalent general expression in
terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value
which reduces the problem to a base case

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

T(n) = c2 + T(n/2) T(1) = c1

2. “Expand” the original relation to find an equivalent general expression in terms of
the number of expansions.

T(n) = c2 + c2 + T(n/4)
T(n) = c2 + c2 + c2 + T(n/8)
T(n) = c2k + T(n/(2k)) (where k is the number of expansions)

3. Find a closed-form expression by setting the number of expansions to a value which
reduces the problem to a base case

n/(2k) = 1 means n = 2k means k = log n
T(n) = c2 log n + c1 (get to base case and do it)
T(n) is O(log n)

Another example: a binary version of sum

Recurrence?int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid)
 + help(arr,mid,hi);
}

Another example: a binary version of sum

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid)
 + help(arr,mid,hi);
}

Another example: a binary version of sum: tree method

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

T(n/2)

c2

T(n/2)

Another example: a binary version of sum

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

c2

c2

c2

T(n/4) T(n/4) T(n/4) T(n/4)

Another example: a binary version of sum

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

c2

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

Another example: a binary version of sum

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

At each level, we have 2k * c2 work, where k is the depth of the level (plus base case)

c2 * (1 + 2 + 4 + 8 + ...)

c2

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

Level k=0

Level k=1

Level k=2

T(n) = c2 * (sum to k of 2k) + base case

Another example: a binary version of sum

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

What is the maximum k in terms of n? When does our recurred case hit T(1)?

n / 2k = 1 2k = n k = log n

c2

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

c2

c2 c2

T(n/8) T(n/8) T(n/8) T(n/8)

Another example: a binary version of sum

Recurrence:

T(n) = c1 for n=0 and n=1
T(n) = c2 + 2T(n/2)

c2 * (1 + 2 + 4 + 8 + ...) for log n times (plus the base case)

More on Perfect Trees

Perfect tree: Every row is completely full

Height (h) # nodes (n) # leaves

0 1 1

1 3 2

2 7 4

3 15 8

h 2h+1 - 1 2h

See Weiss 1.2.3 (p4)

Another example: a binary version of sum

O(n)!!!

Solving Recurrence Relations: Tree Method

1. Write out your recurrence relation
2. Diagram it out as a tree several times
3. Write the unrolled function in terms of some variable k (or i,

whatever you like)
4. Figure out what k has to equal when you hit the base case (for

instance, when you reach T(1)).
5. Solve! Often using math.

Finite Geometric Series:Magic (i.e. log rules):
SECTION!!!!!

The Master Theorem

It’s still really hard to tell what the big-O is just by looking at
it.
But fancy mathematicians have a formula for us to use!

If

If

If

then

then

then

Master Theorem

Slide thanks to Kasey Champion!

Understanding The Master Theorem
● A measures how many

recursive calls are triggered
by each method instance

● B measures the rate of
change for input

● C measures the dominating
term of the non recursive
work within the recursive
method

● D measures the work done
in the base case

If

If

If

then

then

then

Master Theorem

Understanding The Master Theorem
The log of a < c case
○Recursive case does a lot of

non recursive work in
comparison to how quickly it
divides the input size

○Most work happens in beginning
of call stack

○Non recursive work in recursive
case dominates growth, nc term

If

If

If

then

then

then

Master Theorem

Understanding The Master Theorem
The log of a = c
○Recursive case evenly splits

work between non recursive
work and passing along inputs
to subsequent recursive calls

○Work is distributed across call
stack

If

If

If

then

then

then

Master Theorem

Understanding The Master Theorem

The log of a > c case
● Recursive case breaks

inputs apart quickly and
doesn’t do much non
recursive work

● Most work happens near
bottom of call stack

If

If

If

then

then

then

Master Theorem

Understanding The Master Theorem

NOT A SUBSTITUTE FOR
KNOWING HOW TO
UNROLL / TREE!

We may ask you that on
exams, etc

But the Master Theorem is
good for checking your
work

If

If

If

then

then

then

Master Theorem

