
CSE 332
Data Structures & Parallelism

Priority Queues 2

Melissa Winstanley
Spring 2024

Types of Trees

Binary tree: Every node has ≤2 children

n-ary tree: Every node has ≤n children

Perfect tree: Every row is completely full

Complete tree: All rows except possibly the bottom are completely full, and it is
filled from left to right

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

● Structure Property
○ A complete [binary] tree

● Heap Property
○ Every non-root node has a priority value larger than (or possibly equal to)

the priority of its parent

How is this different from a binary search tree?

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

● Structure Property
○ A complete [binary] tree

● Heap Property
○ Every non-root node has a priority value larger than (or possibly equal to)

the priority of its parent

Is it a heap?

A B

C D

Is this a binary min heap? yes/no

3

5 4

5

1 6

3

4 6

5

5

7 6

8 9

Today - Priority Queues / Heaps

● What is a Priority Queue?
● Introduction to the heap
● Heap operations
● Heap implementation
● Building a heap

Heap Operations

● findMin
● insert(val): percolate up
● deleteMin: percolate down

Heap Operations

● findMin
● insert(val): percolate up
● deleteMin: percolate down

Operations: basic idea

● findMin:
return root.data

● deleteMin:
1. answer = root.data
2. Move right-most node in last row to

root to restore structure property
3. “Percolate down” to restore heap

order property
● insert:

1. Put new node in next position on
bottom row to restore structure
property

2. “Percolate up” to restore heap order
property

Overall strategy:
● Preserve complete tree

structure property
● This may break heap order

property
● Percolate to restore heap

order property

A Clever Trick for Storing the Heap

● Clearly, insert and deleteMin are worst-case O(log n)
○ But we promised average-case O(1) insert (how??)

● Insert requires access to the “next to use” position in the tree
○ Walking the tree from root to leaf requires O(log n) steps
○ insert and deleteMin would have to update the “next to use” reference each time:

O(log n)
● We should only pay for the functionality we need!!

○ Why have we insisted the tree be complete? ☺
● All complete trees of size n contain the same edges

○ So why are we even representing the edges?

Here comes the really clever bit about implementing heaps!!!

Array Representation of a Binary Heap

From node i:

● left child:
● right child:
● parent:

● We skip index 0 to make the math simpler
● Actually, it can be a good place to store the current size of the heap

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Today - Priority Queues / Heaps

● What is a Priority Queue?
● Introduction to the heap
● Heap operations
● Heap implementation
● Building a heap

Pseudocode: insert
void insert(int val) {
 if(size==arr.length-1)
 resize();
 size++;
 i=percolateUp(size,val);
 arr[i] = val;
}

int percolateUp(int hole,
 int val) {
 while(hole > 1 &&
 val < arr[hole/2]){
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

10 20 80 40 60 99 85 700 50 65
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pseudocode: deleteMin
int deleteMin() {
 if(isEmpty()) throw…
 ans = arr[1];
 hole = percolateDown
 (1,arr[size]);
 arr[hole] = arr[size];
 size--;
 return ans;
}

int percolateDown(int hole,
 int val) {
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(arr[left] < arr[right]
 || right > size)
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

10 20 80 40 60 99 85 700 50 65
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Example

Insert: 16, 32, 4, 57, 80, 43, 2

Then deleteMin

Do as a tree

What is the result?

0 1 2 3 4 5 6 7

16

16

32

4

32 16

4

32 16

57

4

32 16

57 80

4

32 16

57 80 43

2

32 4

57 80 43 16

4

32 16

57 80 43

1. Insert 16
2. Insert 32 3. Insert 4,

percDown 4. Insert 57

5. Insert 80

6. Insert 43 7. Insert 2,
percDown 8. deleteMin (2)

Other Operations

● decreaseKey: given pointer to object in priority queue (e.g., its array
index), lower its priority value by p
○ Change priority and percolate up

● increaseKey: given pointer to object in priority queue (e.g., its array
index), raise its priority value by p
○ Change priority and percolate down

● remove: given pointer to object in priority queue (e.g., its array index),
remove it from the queue
○ decreaseKey with p = ∞, then deleteMin

● Running time for all these operations?

So why O(1) average-case insert?

● Yes, insert's worst case is O(log n)
● The trick is that it all depends on the order the items are inserted (What is the

worst case order?)
● Experimental studies of randomly ordered inputs shows the following:

○ Average 2.607 comparisons per insert (# of percolation passes)
○ An element usually moves up 1.607 levels

● deleteMin is average O(log n)
○ Moving a leaf to the root usually requires re-percolating that value back to the bottom

Intuition for O(1) runtime average case

● Insert: Place in next spot, percUp
● How high do we expect it to go?
● Aside: Complete Binary Tree

○ Each full row has 2x nodes of parent row
○ Bottom level has ~1/2 of all nodes
○ Second to bottom has ~1/4 of all nodes

● PercUp Intuition:
○ Move up if value is less than parent
○ Inserting a random value, likely to have value not near highest, nor lowest; somewhere in middle
○ Given a random distribution of values in the heap, bottom row should have the upper half of values,

2nd from bottom row, next 1/4
○ Expect to only raise a level or 2, even if h is large

● Worst case: still O(logn)
● Expected case: O(1)
● Of course, there’s no guarantee; it may percUp to the root

Today - Priority Queues / Heaps

● What is a Priority Queue?
● Introduction to the heap
● Heap operations
● Heap implementation
● Building a heap

Building a Heap

Suppose you have n items you want to put in a new priority queue

● A sequence of n insert operations works
● Runtime?

Can we do better?

● If we only have access to insert and deleteMin operations, then NO.
● There is a faster way - O(n), but that requires the ADT to have a specialized

buildHeap operation

Important issue in ADT design: how many specialized operations?

● Tradeoff: Convenience, Efficiency, Simplicity

Floyd’s buildHeap Method

Recall our general strategy for working with the heap:

● Preserve structure property
● Break and restore heap ordering property

Floyd’s buildHeap:

1. Create a complete tree by putting the n items in array indices 1, . . . n
2. Treat the array as a heap and fix the heap-order property

● Exactly how we do this is where we gain efficiency

Thinking about buildHeap

● Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

● To “fix” the ordering can we use:
○ percolateUp?
○ percolateDown?

12

5 11

3 210 9

4 8 1 7 6

Floyd’s buildHeap Method

Bottom-up:

● Leaves are already in heap order
● Work up toward the root one level at a time

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Thinking about buildHeap

● Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

● In tree form for readability
○ Red for node out of place

● Notice no leaves are red
● Check/fix each non-leaf,

bottom-up (6 steps here)

12

5 11

3 210 9

4 8 1 7 6

buildHeap Example
12

5 11

3 210 9

4 8 1 7 6

12

5 11

3 210 9

4 8 1 7 6

STEP 1

No change

buildHeap Example
12

5 11

3 21 9

4 8 10 7 6

12

5 11

3 210 9

4 8 1 7 6

STEP 2

Percolate down

buildHeap Example
12

5 11

3 21 9

4 8 10 7 6

12

5 11

3 21 9

4 8 10 7 6

STEP 3

No change

buildHeap Example
12

5 2

3 61 9

4 8 10 7 11

12

5 11

3 21 9

4 8 10 7 6

STEP 4

Percolate down

buildHeap Example
12

1 2

3 65 9

4 8 10 7 11

12

5 2

3 61 9

4 8 10 7 11

STEP 5

Percolate down

buildHeap Example
1

3 2

4 65 9

12 8 10 7 11

12

1 2

3 65 9

4 8 10 7 11

STEP 6

Percolate down

buildHeap Efficiency

Easy argument: buildHeap is
O(n log n) where n is size

● size/2 loop iterations
● Each iteration does one

percolateDown, each is O(log n)

This is correct, but there is a more
precise (“tighter”) analysis of the
algorithm…

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

buildHeap Efficiency

● No node can percolate down more than the height of its subtree
○ When i is a leaf: 0
○ When i is second-from-last level: 1
○ When i is third-from-last level: 2

● Overall Running time:

k = height of tree = log n
but it’s actually easier
math if we say that it’s
infinity

