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Today - Algorithm Analysis

● What do we care about?
● How to compare two algorithms
● Analyzing code

■ How to count different code constructs
■ Best Case vs Worst Case
■ Ignoring Constant Factors

● Asymptotic Analysis
● Big-Oh Definition



Ignoring constant factors

• So binary search is O(log n) and linear is O(n)
• But which will actually be faster?
• Depending on constant factors and size of n; in a particular situation, linear 

search could be faster….

• Could depend on constant factors
• How many assignments, additions, etc. for each n

• And could depend on size of n – what if n is small?

• But there exists some n
0
 such that for all n > n

0
 binary search “wins”

• Let’s look at a couple plots to get some intuition…



Linear search vs Binary search

Let’s give linear search a boost (n / 600)



Logarithms and Exponents
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Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

• 4n + 5
• 0.5n log n + 2n + 7
• n3 + 2n + 3n
• n log (10n2)
• log log n + log2n



Review: Properties of logarithms

• log(A*B) = log A + log B
• So log(Nk)= k log N

• log(A/B) = log A – log B

• X = log
2
2x

• log(log x) is written log log x
• Grows as slowly as 22^y grows fast
• Ex: log

2
log

2
4billion  ~  log

2
log

2
232  =  log

2
32  =  5

• (log x)(log x) is written log2x
• It is greater than log x for all x > 2
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Big-Oh relates to functions

We use O on a function f(n) (for example n2) to mean the set of 
functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

● 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

● (3n2+17) is O(n2)
● (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)



Formally Big-Oh

Definition: g(n) is in O( f(n) ) iff there exist

positive constants c and n
0
 such that

g(n) ≤ c f(n) for all n ≥ n
0

Note: n
0
 ≥ 1 (and a natural number) and

           c > 0

Or

g(n) ∈ O( f(n) )



Why n
0
? Why c?

Definition: g(n) ∈ O( f(n) ) iff there exist

positive constants c and n
0
 such that

g(n) ≤ c f(n) for all n ≥ n
0



Formally Big-Oh

Definition: g(n) ∈ O( f(n) ) iff there exist

positive constants c and n
0
 such that

g(n) ≤ c f(n) for all n ≥ n
0

To show g(n) ∈ O( f(n) ), pick a c large enough to “cover the constant 
factors” and n

0
 large enough to “cover the lower-order terms”

Example: Let g(n) = 3n + 4 and f(n) = n

c = 4 and n
0
 = 5 is one possibility

This is “less than or equal to”

● So 3n + 4 is also O(n5) and O(2n) etc.



Examples

True or false?

1. 4+3n is O(n)
2. n+2logn is O(logn)
3. logn+2 is O(1)
4. n50 is O(1.1n)

Notes:

● Do NOT ignore constants that are not multipliers:
○ n3 is O(n2) : FALSE
○ 3n is O(2n) : FALSE

● When in doubt, refer to the definition



Big Oh: Common Categories
From fastest to slowest
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant > 1)
O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means 
“grows at rate proportional to kn for some k>1”



More Asymptotic Notation

• Upper bound: O( f(n) ) is the set of all functions asymptotically less 
than or equal to f(n)
• g(n) ∈ O( f(n) ) if there exist constants c and n

0
 such that

  g(n) ≤ c f(n) for all n ≥ n
0

• Lower bound: 𝛀( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n)

• g(n) ∈ 𝛀( f(n) ) if there exist constants c and n
0
 such that

  g(n) ≥ c f(n) for all n ≥ n
0

• Tight bound: 𝝷( f(n) ) is the set of all functions asymptotically 
equal to f(n)

• Intersection of O( f(n) ) and 𝛀( f(n) )   (can use different c values)



O, Theta, Omega



Regarding use of terms
A common error is to say O( f(n) ) when you mean 𝝷( f(n) )

• People often say O() to mean a tight bound
• Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only 

conveys the upper-bound
• Since f(n)=n is also O(n5), it’s tempting to say “this algorithm is exactly 

O(n)”
• Somewhat incomplete; instead say it is 𝝷(n)
• That means that it is not, for example O(log n)

Less common notation:

• “little-oh”: like “big-Oh” but strictly less than
• Example: sum is o(n2) but not o(n)

• “little-omega”: like “big-Omega” but strictly greater than
• Example: sum is ω(log n) but not ω(n)



Summary of Complexity cases

Problem size N

• Worst-case complexity: max # steps algorithm takes on “most 
challenging” input of size N

• Best-case complexity: min # steps algorithm takes on “easiest” 
input of size N

• Average-case complexity: avg # steps algorithm takes on random 
inputs of size N

• Amortized complexity: max total # steps algorithm takes on M 
“most challenging” consecutive inputs of size N, divided by M (i.e., 
divide the max total by M).



What we are analyzing

• The most common thing to do is give an O or 𝝷 bound to the 
worst-case running time of an algorithm

• Example: True statements about binary-search algorithm
• Common: 𝝷(log n) running-time in the worst-case
• Less common: 𝝷(1) in the best-case (item is in the middle)
• Less common: Algorithm is 𝛀(log log n) in the worst-case (it is 

not really, really, really fast asymptotically)
• Less common (but very good to know): the find-in-sorted-array 

problem is 𝛀(log n) in the worst-case
• No algorithm can do better (without parallelism)
• A problem cannot be O(f(n)) since you can always find a 

slower algorithm, but can mean there exists an algorithm



Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)

• Or power or dollars or …
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper or tight)



Summary

O 𝛀 𝝷
Best

Worst

Average

💖



Addendum: Timing vs Big-Oh?

• At the core of CS is a backbone of theory & mathematics
• Examine the algorithm itself, mathematically, not the 

implementation
• Reason about performance as a function of n
• Be able to mathematically prove things about performance

• Yet, timing has its place
• In the real world, we do want to know whether implementation A 

runs faster than implementation B on data set C
• Ex: Benchmarking graphics cards

• Evaluating an algorithm? Use asymptotic analysis
• Evaluating an implementation of hardware/software? Timing 

can be useful



Show 10n + 100 ∈ O(n2)
• Technique: find values c > 0 and n

0
 > 0 such that 10n + 

100 is less than c * n2

Asymptotic Notation Example



Show 10n + 100 ∈ O(n2)
• Technique: find values c > 0 and n

0
 > 0 such that 10n + 100 is less than or 

equal to c * n2

Let c = 10, n0 = 6

10n + 100 <= 10n2

n + 10 <= n2

10 <= n2 - n
10 <= n*(n-1)
n*(n-1) is strictly increasing, and
  10 < 6*(6-1)

Asymptotic Notation Example


