
CSE 332
Data Structures & Parallelism

Algorithm Analysis 2

Melissa Winstanley
Spring 2024

Today - Algorithm Analysis

● What do we care about?
● How to compare two algorithms
● Analyzing code

■ How to count different code constructs
■ Best Case vs Worst Case
■ Ignoring Constant Factors

● Asymptotic Analysis
● Big-Oh Definition

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)
• But which will actually be faster?
• Depending on constant factors and size of n; in a particular situation, linear

search could be faster….

• Could depend on constant factors
• How many assignments, additions, etc. for each n

• And could depend on size of n – what if n is small?

• But there exists some n
0
 such that for all n > n

0
 binary search “wins”

• Let’s look at a couple plots to get some intuition…

Linear search vs Binary search

Let’s give linear search a boost (n / 600)

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Today - Algorithm Analysis

● What do we care about?

● How to compare two algorithms

● Analyzing code

● Asymptotic Analysis

● Big-Oh Definition

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

• 4n + 5
• 0.5n log n + 2n + 7
• n3 + 2n + 3n
• n log (10n2)
• log log n + log2n

Review: Properties of logarithms

• log(A*B) = log A + log B
• So log(Nk)= k log N

• log(A/B) = log A – log B

• X = log
2
2x

• log(log x) is written log log x
• Grows as slowly as 22^y grows fast
• Ex: log

2
log

2
4billion ~ log

2
log

2
232 = log

2
32 = 5

• (log x)(log x) is written log2x
• It is greater than log x for all x > 2

Today - Algorithm Analysis

● What do we care about?

● How to compare two algorithms

● Analyzing code

● Asymptotic Analysis

● Big-Oh Definition

Big-Oh relates to functions

We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

● 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

● (3n2+17) is O(n2)
● (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist

positive constants c and n
0
 such that

g(n) ≤ c f(n) for all n ≥ n
0

Note: n
0
 ≥ 1 (and a natural number) and

 c > 0

Or

g(n) ∈ O(f(n))

Why n
0
? Why c?

Definition: g(n) ∈ O(f(n)) iff there exist

positive constants c and n
0
 such that

g(n) ≤ c f(n) for all n ≥ n
0

Formally Big-Oh

Definition: g(n) ∈ O(f(n)) iff there exist

positive constants c and n
0
 such that

g(n) ≤ c f(n) for all n ≥ n
0

To show g(n) ∈ O(f(n)), pick a c large enough to “cover the constant
factors” and n

0
 large enough to “cover the lower-order terms”

Example: Let g(n) = 3n + 4 and f(n) = n

c = 4 and n
0
 = 5 is one possibility

This is “less than or equal to”

● So 3n + 4 is also O(n5) and O(2n) etc.

Examples

True or false?

1. 4+3n is O(n)
2. n+2logn is O(logn)
3. logn+2 is O(1)
4. n50 is O(1.1n)

Notes:

● Do NOT ignore constants that are not multipliers:
○ n3 is O(n2) : FALSE
○ 3n is O(2n) : FALSE

● When in doubt, refer to the definition

Big Oh: Common Categories
From fastest to slowest
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant > 1)
O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to kn for some k>1”

More Asymptotic Notation

• Upper bound: O(f(n)) is the set of all functions asymptotically less
than or equal to f(n)
• g(n) ∈ O(f(n)) if there exist constants c and n

0
 such that

 g(n) ≤ c f(n) for all n ≥ n
0

• Lower bound: 𝛀(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)

• g(n) ∈ 𝛀(f(n)) if there exist constants c and n
0
 such that

 g(n) ≥ c f(n) for all n ≥ n
0

• Tight bound: 𝝷(f(n)) is the set of all functions asymptotically
equal to f(n)

• Intersection of O(f(n)) and 𝛀(f(n)) (can use different c values)

O, Theta, Omega

Regarding use of terms
A common error is to say O(f(n)) when you mean 𝝷(f(n))

• People often say O() to mean a tight bound
• Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only

conveys the upper-bound
• Since f(n)=n is also O(n5), it’s tempting to say “this algorithm is exactly

O(n)”
• Somewhat incomplete; instead say it is 𝝷(n)
• That means that it is not, for example O(log n)

Less common notation:

• “little-oh”: like “big-Oh” but strictly less than
• Example: sum is o(n2) but not o(n)

• “little-omega”: like “big-Omega” but strictly greater than
• Example: sum is ω(log n) but not ω(n)

Summary of Complexity cases

Problem size N

• Worst-case complexity: max # steps algorithm takes on “most
challenging” input of size N

• Best-case complexity: min # steps algorithm takes on “easiest”
input of size N

• Average-case complexity: avg # steps algorithm takes on random
inputs of size N

• Amortized complexity: max total # steps algorithm takes on M
“most challenging” consecutive inputs of size N, divided by M (i.e.,
divide the max total by M).

What we are analyzing

• The most common thing to do is give an O or 𝝷 bound to the
worst-case running time of an algorithm

• Example: True statements about binary-search algorithm
• Common: 𝝷(log n) running-time in the worst-case
• Less common: 𝝷(1) in the best-case (item is in the middle)
• Less common: Algorithm is 𝛀(log log n) in the worst-case (it is

not really, really, really fast asymptotically)
• Less common (but very good to know): the find-in-sorted-array

problem is 𝛀(log n) in the worst-case
• No algorithm can do better (without parallelism)
• A problem cannot be O(f(n)) since you can always find a

slower algorithm, but can mean there exists an algorithm

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)

• Or power or dollars or …
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper or tight)

Summary

O 𝛀 𝝷
Best

Worst

Average

💖

Addendum: Timing vs Big-Oh?

• At the core of CS is a backbone of theory & mathematics
• Examine the algorithm itself, mathematically, not the

implementation
• Reason about performance as a function of n
• Be able to mathematically prove things about performance

• Yet, timing has its place
• In the real world, we do want to know whether implementation A

runs faster than implementation B on data set C
• Ex: Benchmarking graphics cards

• Evaluating an algorithm? Use asymptotic analysis
• Evaluating an implementation of hardware/software? Timing

can be useful

Show 10n + 100 ∈ O(n2)
• Technique: find values c > 0 and n

0
 > 0 such that 10n +

100 is less than c * n2

Asymptotic Notation Example

Show 10n + 100 ∈ O(n2)
• Technique: find values c > 0 and n

0
 > 0 such that 10n + 100 is less than or

equal to c * n2

Let c = 10, n0 = 6

10n + 100 <= 10n2

n + 10 <= n2

10 <= n2 - n
10 <= n*(n-1)
n*(n-1) is strictly increasing, and
 10 < 6*(6-1)

Asymptotic Notation Example

