CSE 332
Data Structures & Parallelism

Algorithm Analysis 2

Melissa Winstanley
Spring 2024

Today - Algorithm Analysis

e \What do we care about?
® How to compare two algorithms

® Analyzing code
m How to count different code constructs
m Best Case vs Worst Case
m Ignoring Constant Factors

® Asymptotic Analysis
® Big-Oh Definition

lgnoring constant factors

e So binary search is O(log n) and linear is O(n)
e But which will actually be faster?
e Depending on constant factors and size of n; in a particular situation, linear
search could be faster....

e Could depend on constant factors
e How many assignments, additions, etc. for each n
e And could depend on size of n —what if n is small?

e But there exists som@mh that forall n > n, binary search “wins”

—
e Let’s look at a couple plots to get some intuition...

Linear search vs Binary search

N VA

——bhinary

- linear

90

80
70
60
50
40

30

—&=—binary

== |inear

Let’s give linear search a boost (n / 600)

Logarithms and Exponents

25

20

15

10

T T T T T T T T T T T T T T T T T T T 1
1 2 3 45 6 7 8 91011121314151617 181920

Logarithms and Exponents

35

30

25

20

15

10

5

0

F

/,

a

é/iﬂr*

=i 2"n
A2
—4—n

—d—log n

Logarithms and Exponents

3000

2500

2000

1500

1000

500

135 7 91113151719212325272931333537394143454749

== An

e A

—i—log n

Today - Algorithm Analysis

What do we care about?

How to compare two algorithms
Analyzing code

Asymptotic Analysis

Big-Oh Definition

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

Review: Properties of logarithms
e log(A*B)=logA+logB
e Solog(N¥)=klogN
e log(A/B)=logA-logB
° i: |Qg;2x
e |og(log x) is written\log log x \
e Grows as slowly as 2“7 grows fast

* Ex:log,log 4billion ~ log,log,2** = log,32 = 5

e (log x)(log x) is writte
e |tis greater than log x for all x> 2

Today - Algorithm Analysis

What do we care about?

How to compare two algorithms
Analyzing code

Asymptotic Analysis

Big-Oh Definition

Big-Oh relates to functions

We use O on a function f(n) (for example n?) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

So \(3n2+17i(ls in P(nz)

e 3n%+17 and n? have the same asymptotic behavior__

Confusingly, we also say/write:

e (3n%+1 O(n?)
e (3n%+17)=)0(n?)

But we would never say(3n2+17)

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n_ such that

g(n) S@f(n) for all n 2@\‘

Note: n 21 (and a natural number) and
c>0

Or
g(n) € O(f(n))

Why n,? Why c?

Definition: g(n) € O(f(n)) iff there exist
positive constants c and n_ such that
g(n) < cf(n) forallnzn,

Why ¢?

ANy

Formally Big-Oh

Definition: g(n) € O(f(n)) iff there exist
positive constants c and n_ such that

g(n)Sg_f(n) forallnzn,

, ?
no —» N
To show g(n) € O(f(n)), pick a c large enough to “cover the constant
factors” and n large enough to “cover the lower-order terms”

E le: Let =3n+4andf(n) =
xample: Let g(n) = 3n and f(n) = n 5(_’__{ C;jzlz\

c=4 andﬁls one possibility A
This is “less than or equal to” o

e So3n+4isalso O(n>) and O(2") etc.

Examples

True or false?

1. 4+3nisO(n) |
2 n 2logn is O(logn) N
.34 2|s 0(1)

" is 0(1.1") T

Notes:

e Do NOT ignore constants that are not multipliers:
o n?is O(n?) : FALSE %
o 3"is O(2") : FALSE

e When in doubt, refer to the definition

Big Oh: Common Categories

~ From fastest to slowest

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(nlogn) “nlogn” M
O(n?) quadratic
\ O(n3) cubic
O(n¥) polynomial (where is k is any constant > 1)
O(k") exponential (where k is any constant > 1)

Q"
LLage)ote: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to kn for some k>1"

More Asymptotic Notation

Upper bound: O(f(n)) is the set of all functions asymptotically less
than or equal to f(n)

e g(n) € O(f(n)) if there exist constants c and n_such that
g(n)<cf(n)forallnz

Lower bound: €(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
. g(n) € Q(f(n)) if there exist constants c and n_such that
g(n) 2 cf(n) forallnz

Tight bound: ©(f(n)) is the set of all functions asymptotically
equal to f(n)
« Intersection of O(f(n)) and €2(f(n)) (can use different c values)

O, Theta, Omega

f(m) =0(g(n)

c2g(n)
f(n) f(m =§@;£g(n))
c1g(n f(m) =Q(@gm)

Regarding use of terms

A common error is to say O(f(n)) when you mean 6(f(n))
People often say O() to mean a tight bound]

Say we have f(n)=n; we could say f(n) is i , Which is true, but only
conveys the upper-bound
e Since f(n)=nis also O(n>), it’s tempting to say “this algorithm is exactly
O[’H ——
e Somewhat incomplete; instead say it i% O(n) \

e That means that it is not, for example O(log n)
Less common notation:
e “little-oh”: like “big-Oh” but strictly less than O (ﬁ>

e Example: sum is o(n?) but not o(n)
e “little-omega”: like “big-Omega” but strictly greater than
e Example: sum is W(log n) but not w(n)

N O |fﬂ’ — D\

Summary of Complexity cases — =

o N

Problem size N % k \

e Worst-case complexity: mx # steps algorithm takes on “most
challenging”input of size N

e Best-case complexity: min # steps algorithm takes on “easiest”
input of size N

e Average- WV avg # steps algorithm takes on random
Inputs of size N

[Amortized complexity: max total # steps algorithm takes on M

“most challenging” consecutive inputs of size N, divided by M (i.e.,
divide the max total by M).

What we are analyzing

e The most common thing to do is give an O or 8 bound to the
worst-case running time of an algorithm

e Example: True statements about binary-search algorithm
e Common: B(log n) running-time in the worst-case
e Lesscommon:©(1) in the best-case (item is in the middle)

e Less common: Algorithm is €2(log log n) in the worst-case (it is
not really, really, really fast asymptotically)
e [ess common (but very good to know): the find-in-sorted-array

problem is €2(log n) in the worst-case
e No algorithm can do better (without parallelism)
e A problem cannot be O(f(n)) since you can always find a
slower algorithm, but can mean there exists an algorithm

Summary

Analysis can be about:

e The problem or the algorithm (usually algorithm)

e Time or space (usually time)
e Or power or dollars or ...

e Best-, worst-, or average-case (usually worst)
e Upper-, lower-, or tight-bound (usually upper or tight)

Summary

Best
Worst

Average

Addendum: Timing vs Big-Oh?

e At the core of CS is a backbone of theory & mathematics

e Examine the algorithm itself, mathematically, not the
implementation

e Reason about performance as a function of n
e Be able to mathematically prove things about performance
e Yet, timing has its place
e |nthe real world, we do want to know whether implementation A

runs faster than implementation B on data set C
e Ex: Benchmarking graphics cards

e Evaluating an algorithm? Use asymptotic analysis

e Evaluating an implementation of hardware/software? Timing
can be useful

Asymptotic Notation Example

Show 10n + 100 € O(n?)
 Technique: find vaIues ¢ >0and n, >0 such that 10n +
100 is less than ¢ * n?

Asymptotic Notation Example

Show 10n + 100 € 0O(n?)

e Technique: *find values ¢ >0 and n,> 0 such that 10n + 100 is less than or
equal to ¢ * n?

Let ¢ = 10, n, = ©

10n + 100 <= 10n?

n + 10 <= n?

10 <= n® - n

10 <= n*(n-1)

n*(n-1) is strictly increasing, and
10 < 6*(6-1)

