CSE 332 Data Structures & Parallelism

Algorithm Analysis 2

Melissa Winstanley Spring 2024

Today - Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing code
 - How to count different code constructs
 - Best Case vs Worst Case
 - Ignoring Constant Factors
- Asymptotic Analysis
- Big-Oh Definition

Ignoring constant factors

- So binary search is O(log n) and linear is O(n)
 - But which will actually be <u>faster</u>?
 - Depending on constant factors and size of n; in a particular situation, linear search could be faster....
- Could depend on constant factors
 - How *many* assignments, additions, etc. for each n
- And could depend on size of n what if n is small?
- **<u>But</u>** there exists some n_0 such that for all $n > n_0$ binary search "wins"
- Let's look at a couple plots to get some intuition...

Linear search vs Binary search

Lime

Let's give linear search a boost (n / 600)

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Today - Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing code
- Asymptotic Analysis
- Big-Oh Definition

Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

Review: Properties of logarithms

- $\log(A^*B) = \log A + \log B$
 - So log(N^k)= k log N
- log(A/B) = log A log B
- $X = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as 2² grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x)(log x) is written log²x
 - It is greater than log x for all x > 2

Today - Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing code
- Asymptotic Analysis
- Big-Oh Definition

Big-Oh relates to functions

We use O on a function f(n) (for example n^2) to mean *the set of functions with asymptotic behavior less than or equal to* f(n)So $(3n^2+17)$ is in $O(n^2)$

3n²+17 and n² have the same asymptotic behavior

Confusingly, we also say/write:

- $(3n^2+17)$ is $O(n^2)$
- $(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

Formally Big-Oh

Or

Why n₀? Why c?

Why n_0 ?

Why c?

Definition : $g(n) \in O(f(n))$ iff there exist					
positive constants c and n_o such that					
$g(n) \leq \underline{cf(n)}$ for all $n \geq n_0$					

To show $g(n) \in O(f(n))$, pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"

Example: Let g(n) = 3n + 4 and f(n) = n c = 4 and $n_0 = 5$ is one possibility This is "less than or equal to"

• So 3n + 4 is also $O(n^5)$ and $O(2^n)$ etc.

$$3n+4 \leq 4n$$

 $4 \leq n$

Examples

True or false?

1. 4+3n is O(n)2. $n+2\log n \text{ is } O(\log n)$ 3. $\log n+2 \text{ is } O(1)$ 4. $n^{50} \text{ is } O(1.1^n)$

Notes:

- Do NOT ignore constants that are not multipliers:
 - n^3 is $O(n^2)$: FALSE
 - \circ 3ⁿ is O(2ⁿ) : FALSE
- When in doubt, refer to the definition

Big Oh: Common Categories

From fastest to slowest

O(1)constant (same as O(k) for constant k) O(log n) logarithmic O(n)linear "n log n" O(n log n) $O(n^2)$ quadratic O(n³) cubic O(n^ĸ) polynomial (where is k is any constant > 1) $O(k^n)$ exponential (where k is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to kn for some k>1"

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) ∈ O(f(n)) if there exist constants c and n₀ such that g(n) ≤ c f(n) for all n ≥ n₀
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) ∈ Ω(f(n)) if there exist constants c and n₀ such that g(n) ≥ c f(n) for all n ≥ n₀
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (can use different c values)

O, Theta, Omega

Regarding use of terms

A common error is to say O(f(n)) when you mean $\Theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also $O(n^5)$, it's tempting to say "this algorithm is exactly" *O(n)*"
- Somewhat incomplete; instead say it is $\Theta(n)$
- That means that it is not, for example O(log n)

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 Example: sum is o(n²) but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$

Summary of Complexity cases

Problem size N

- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N
- Average-case complexity: avg # steps algorithm takes on random inputs of size N
- Amortized complexity: max total # steps algorithm takes on M "most challenging" consecutive inputs of size N, divided by M (i.e., divide the max total by M).

What we are analyzing

- The most common thing to do is give an O or **θ** bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - *Common*: **θ**(log n) running-time in the worst-case
 - Less common: $\Theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sorted-array **problem** is $\Omega(\log n)$ in the worst-case
 - *No* algorithm can do better (without parallelism)
 - A *problem* cannot be O(f(n)) since you can always find a slower algorithm, but can mean *there exists* an algorithm

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Summary

	0	Ω	θ
Best			
Worst			()
Average			

Addendum: Timing vs Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

Asymptotic Notation Example

Show $10n + 100 \in O(n^2)$

Technique: find values c > 0 and n₀ > 0 such that 10n + 100 is less than c * n²

Asymptotic Notation Example

Show $10n + 100 \subseteq O(n^2)$ • Technique: find values c > 0 and $n_0 > 0$ such that 10n + 100 is less than or equal to $c * n^2$

```
Let c = 10, n<sub>0</sub> = 6
10n + 100 <= 10n<sup>2</sup>
n + 10 <= n<sup>2</sup>
10 <= n<sup>2</sup> - n
10 <= n*(n-1)
n*(n-1) is strictly increasing, and
10 < 6*(6-1)</pre>
```