CSE 332
Data Structures & Parallelism

Algorithm Analysis

Melissa Winstanley
Spring 2024

Today & Next Time - Algorithm Analysis

What do we care about?

How to compare two algorithms
Analyzing code

Asymptotic Analysis

Big-Oh Definition

What do we care about?

e (Correctness:
e Does the algorithm do what is intended.

e Performance:
e Speed time complexity
e Memory space complexity

e Why analyze?
e To make good design decisions
e Enable you to look at an algorithm (or code) and identify the
bottlenecks, etc.

Q: How should we compare two algorithms?
Sort all students who have taken 332

Chandni Arya
5 seconds 4 seconds
3.5 seconds 2 seconds

0 seconds

Today - Algorithm Analysis

What do we care about?

How to compare two algorithms
Analyzing code

Asymptotic Analysis

Big-Oh Definition

: How should we compare two algorithms?

Uh, why NOT just run the program and time it??
Too much variability, not reliable or portable:
Hardware: processor(s), memory, etc.

OS, Java version, libraries, drivers

Other programs running

Implementation dependent

Choice of input
e Testing (inexhaustive) may miss worst-case input
e Timing does not explain relative timing among inputs (what happens when
n doubles in size)

Often want to evaluate an algorithm, not an implementation
. Eve[@reating the implementation (“coding it up”)

Comparing algorithms

When is one algorithm (not implementation) better than another?

e Various possibte-answers (clarity, security, ...)
e But a big on for sufficiently large inputs, runs in
less time (ounfecus) or less space
@gﬁirm/ms/mﬁbecause probably any algorithm is “plenty good” for
small inputs (if n is 10, probably anything is fast enough)
Answer will be independent of CPU speed, programming language,

coding tricks, etc. -

Answer is general and rigorous, complementary to “coding it up and
timing it on some test cases”

e (Can do analysis before coding!

Goals for Algorithm Analysis

* Identify a function which maps the algorithm’s input size to a
measure of resources used

* Input of the function: size of the function input (n)

* Number of characters in a string, number of items in a list, number of pixels
in an image

e Output of the function: counts of resources used

* Important note: Make sure you know the “units” of your
domain and codomain!

Today - Algorithm Analysis

e \What do we care about?
® How to compare two algorithms

® Analyzing code
m How to count different code constructs
m Best Case vs Worst Case
m Ignoring Constant Factors

® Asymptotic Analysis
® Big-Oh Definition

Analyzing code

Basic operations take “some amount of”@nstant time |

e | Arithmetic
e | Assignment O ‘

Access one Java field or array index
Etc.

(This is an approximation of reality: a very useful “lie”.)

ConsecuW Sum of time of each statement

Loops Num iterations * time for loop body
Conditionals, Time of condition plus time of slower branch
Function Calls Time of function’s body

. ~ .
Eecursm)n Solve recurrence equatlon

Example 1
5)
e b

c + 100:1

°r@ 9?{ Sh

} /I\ \
if “j < 5) g
} else { , :?

for (i = 0; i < n; i++) {5(\+‘ [)r_[Z

sum++;
}

Example 2

int coolFunction(int n,
int 1, j;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {|) Y-
sum++ ;

int sum) {

}
}

print "This program is -reat'"
for (i =n; i >1; i

i / 2
sum++; J %1@ AR ‘
}
return suT:}

Using Summation for Loops

for (i = 0; i < n; i++) {
sum++;

S5 = o

Example 3

List<Integer> beAnnoying (List<Integer> lst) {
List m = new ArraylList<Integer>() ;
for (i = 0; i < lst.size(); i++) {
m.add (1st.get (1)) ;
for (j = 0; j < 1lst.size(); Jj++){
print(“Hi, I’'m annoying”);

}

return m;

What about memory?

List<Integer> beAnnoying (List<Integer> 1lst) {
EE?st m = new ArrayList<Integer>() ;

%i?r (i = 0; i < 1lst.size(); i++){ ?5(,\1—+i5r\

KmLadéklst.get(%));

for (j = 0; j <rrrs./s'u/1ze';; J++) {
(]L({) print (“Hi, m annoying”) ;

e $Bs.R

Rt

Today - Algorithm Analysis

e \What do we care about?
® How to compare two algorithms

® Analyzing code
m How to count different code constructs
m Best Case vs Worst Case
m Ignoring Constant Factors

® Asymptotic Analysis
® Big-Oh Definition

Complexity cases

We'll start by focusing on two scenarios:

e \Worst-case complexity: max # steps algorithm takes on
“most challenging” input of size N

® Best-case complexity: min # steps algorithm takes on
“easiest” input of size N

Example - best case? worst case?

b=Db + 5
°oZ 2% onN ot
b = 2 i 100 C; %)&KF\7

for (i = 0; i < n; i++) {
sum++; é;sz’////
}

if (3 < 5) {
sum++;
} else {

for (1 = 0; 1 < n; i++) { Q-/

sum++;
}

Example

5

8

13

42

75 79

88

90

95

99

0

1

2

3

Find an integer in a sorted array

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr,

???

int k) {

Linear search - Best Case & Worst Case

5 8 13 42 75 79 88 90 95 99

0 1 2 3 4 5 6 7 8 9

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
for(int i=0; i < arr.length; ++i)

if (arr[1i] == k)
return true;
return false;

Best case:

Worst case:

Linear search - Best Case & Worst Case

5 8 13 42 75 79 88 90 95 99

0 1 2 3 4 5 6 7 8 9

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
for(int i=0; i < arr.length; ++i)

if (arr[1i] == k)
return true;
return false;

Best case: 6-ish steps = O(1)

Worst case:
5-ish steps * (arr.length) = O(n)

Remember a faster search algorithm?

e or [

Worst case analysis

e \Worst-case complexity: max # steps algorithm takes on

“most challenging” input of size N
o Does NOT depend on how big N is
o Depends on the actual arguments to the algorithm

Today - Algorithm Analysis

e \What do we care about?
® How to compare two algorithms

® Analyzing code
m How to count different code constructs
m Best Case vs Worst Case
m Ignoring Constant Factors

® Asymptotic Analysis
® Big-Oh Definition

lgnoring constant factors

e So binary search is O(log n) and linear is O(n)
e But which will actually be faster?
e Depending on constant factors and size of n; in a particular situation, linear
search could be faster....

e Could depend on constant factors
e How many assignments, additions, etc. for each n

e And could depend on size of n —what if n is small?

e But there exists som@ch that for all n > n, binary search “wins”

e Nl e
e Let’s look at a couple plots to get some intuition...

Linear search vs Binary search

LA
12
10 \
8 4
6))
- binary &—binary
——linear ——linear

Let’s give linear search a boost (n / 600)

