
CSE 332
Data Structures & Parallelism

Algorithm Analysis

Melissa Winstanley
Spring 2024

Today & Next Time - Algorithm Analysis

● What do we care about?

● How to compare two algorithms

● Analyzing code

● Asymptotic Analysis

● Big-Oh Definition

What do we care about?

• Correctness:
• Does the algorithm do what is intended.

• Performance:
• Speed time complexity
• Memory space complexity

• Why analyze?
• To make good design decisions
• Enable you to look at an algorithm (or code) and identify the

bottlenecks, etc.

Q: How should we compare two algorithms?
Sort all students who have taken 332
Chandni

5 seconds

3.5 seconds

0 seconds

Arya

4 seconds

2 seconds

Today - Algorithm Analysis

● What do we care about?

● How to compare two algorithms

● Analyzing code

● Asymptotic Analysis

● Big-Oh Definition

A: How should we compare two algorithms?

• Uh, why NOT just run the program and time it??
• Too much variability, not reliable or portable:
• Hardware: processor(s), memory, etc.
• OS, Java version, libraries, drivers
• Other programs running
• Implementation dependent

• Choice of input
• Testing (inexhaustive) may miss worst-case input
• Timing does not explain relative timing among inputs (what happens when

n doubles in size)

• Often want to evaluate an algorithm, not an implementation
• Even before creating the implementation (“coding it up”)

Comparing algorithms
When is one algorithm (not implementation) better than another?

• Various possible answers (clarity, security, …)
• But a big one is performance: for sufficiently large inputs, runs in

less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good” for
small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
timing it on some test cases”

• Can do analysis before coding!

Goals for Algorithm Analysis

• Identify a function which maps the algorithm’s input size to a
measure of resources used
• Input of the function: size of the function input (n)

• Number of characters in a string, number of items in a list, number of pixels
in an image

• Output of the function: counts of resources used

• Important note: Make sure you know the “units” of your
domain and codomain!

Today - Algorithm Analysis

● What do we care about?
● How to compare two algorithms
● Analyzing code

■ How to count different code constructs
■ Best Case vs Worst Case
■ Ignoring Constant Factors

● Asymptotic Analysis
● Big-Oh Definition

Analyzing code
Basic operations take “some amount of” constant time

• Arithmetic
• Assignment
• Access one Java field or array index
• Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Conditionals Time of condition plus time of slower branch

Function Calls Time of function’s body

Recursion Solve recurrence equation

Example 1
b = b + 5
c = b / a
b = c + 100

for (i = 0; i < n; i++) {
 sum++;
}

if (j < 5) {
 sum++;
} else {
 for (i = 0; i < n; i++) {
 sum++;
 }
}

Example 2

int coolFunction(int n, int sum) {
 int i, j;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 sum++;
 }
 }
 print "This program is great!"
 for (i = n; i > 1; i = i / 2) {
 sum++;
 }
 return sum
}

Using Summation for Loops

 for (i = 0; i < n; i++) {
 sum++;
 }

Example 3
List<Integer> beAnnoying(List<Integer> lst){
 List m = new ArrayList<Integer>();
 for (i = 0; i < lst.size(); i++){
 m.add(lst.get(i));
 for (j = 0; j < lst.size(); j++){
 print(“Hi, I’m annoying”);
 }
 }
 return m;
}

What about memory?
List<Integer> beAnnoying(List<Integer> lst){
 List m = new ArrayList<Integer>();
 for (i = 0; i < lst.size(); i++){
 m.add(lst.get(i));
 for (j = 0; j < lst.size(); j++){
 print(“Hi, I’m annoying”);
 }
 }
 return m;
}

Today - Algorithm Analysis

● What do we care about?
● How to compare two algorithms
● Analyzing code

■ How to count different code constructs
■ Best Case vs Worst Case
■ Ignoring Constant Factors

● Asymptotic Analysis
● Big-Oh Definition

Complexity cases

We’ll start by focusing on two scenarios:

● Worst-case complexity: max # steps algorithm takes on
“most challenging” input of size N

● Best-case complexity: min # steps algorithm takes on
“easiest” input of size N

Example - best case? worst case?
b = b + 5
c = b / a
b = c + 100

for (i = 0; i < n; i++) {
 sum++;
}

if (j < 5) {
 sum++;
} else {
 for (i = 0; i < n; i++) {
 sum++;
 }
}

Example

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 ???
}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Linear search - Best Case & Worst Case

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
 }
}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Best case:

Worst case:

Linear search - Best Case & Worst Case

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
 }
}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Best case: 6-ish steps = O(1)

Worst case:
 5-ish steps * (arr.length) = O(n)

Remember a faster search algorithm?

Worst case analysis

● Worst-case complexity: max # steps algorithm takes on
“most challenging” input of size N
○ Does NOT depend on how big N is
○ Depends on the actual arguments to the algorithm

Today - Algorithm Analysis

● What do we care about?
● How to compare two algorithms
● Analyzing code

■ How to count different code constructs
■ Best Case vs Worst Case
■ Ignoring Constant Factors

● Asymptotic Analysis
● Big-Oh Definition

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)
• But which will actually be faster?
• Depending on constant factors and size of n; in a particular situation, linear

search could be faster….

• Could depend on constant factors
• How many assignments, additions, etc. for each n

• And could depend on size of n – what if n is small?

• But there exists some n
0
 such that for all n > n

0
 binary search “wins”

• Let’s look at a couple plots to get some intuition…

Linear search vs Binary search

Let’s give linear search a boost (n / 600)

